#include <bits/stdc++.h> #define REP(i,n) for(int i=0,i##_len=(n);i<i##_len;++i) #define RREP(i,n) for(int i=int(n)-1;i>=0;--i) #define rep(i,a,b) for(int i=int(a);i<int(b);++i) #define rrep(i,a,b) for(int i=int(a)-1;i>=int(b);--i) #define All(x) (x).begin(),(x).end() #define rAll(x) (x).rbegin(),(x).rend() #define ITR(i,x) for(auto i=(x).begin();i!=(x).end();++i) using namespace std; using Graph = vector<vector<int>>; typedef long long ll; typedef pair<ll, ll> P; typedef vector<int> vi; typedef vector<vi> vvi; typedef vector<ll> vl; typedef vector<vl> vvl; constexpr ll mod = 1e9+7; constexpr double eps = 1e-9; P bisearch(ll l,ll r,function<bool(ll)> f){ while((l+1)<r){ ll m=(l+r)/2; if(f(m)) r=m; else l=m; } return P(l,r); } ll SQRT(ll n){if(n==1) return 1;return bisearch(0,n,[n](ll x){return x>n/x;}).first;} ll roundup(ll n,ll div){ if(n>0) return (n-1)/div+1; else return n/div; } bool square(ll a){ll n=SQRT(a);return a==n*n;} ll npow(ll x, ll n){ ll ans = 1; while(n != 0){ if(n&1) ans = ans*x; x = x*x; n = n >> 1; } return ans; } ll mpow(ll x, ll n){ //x^n(mod) ←普通にpow(x,n)では溢れてしまうため,随時mod計算 2分累乗法だから早い ll ans = 1; while(n != 0){ if(n&1) ans = ans*x % mod; x = x*x % mod; n = n >> 1; } return ans; } ll inv_mod(ll a){return mpow(a,mod-2);} int digitsum(ll N,int a){ if(N==0) return 0; int ret=0; ret+=digitsum(N/a,a)+N%a; return ret; } ll gcd(ll x,ll y){return y ? gcd(y,x%y) : x;};//xとyの最大公約数 ll lcm(ll x,ll y){return x/gcd(x,y)*y;}//xとyの最小公倍数 void YN(bool flg){std::cout<<(flg?"YES":"NO")<<endl;} void Yn(bool flg){std::cout<<(flg?"Yes":"No")<<endl;} void yn(bool flg){std::cout<<(flg?"yes":"no")<<endl;} P splitint(string n,int a){ int Len=n.length(); if(a<0||Len<a) return {-1,-1}; string left,right; if(a!=0) left=n.substr(0,a); if(a!=Len) right=n.substr(a); return P(stoll(left),stoll(right)); } ll manhattan(const P &a,const P &b){return llabs(a.first-b.first)+llabs(a.second-b.second);} bool kaibun(string s){//O(|S|) string sdash=s; reverse(All(s)); return s==sdash; } class Ruiseki{ private: vector<ll> LEFT,RIGHT; function<ll(ll,ll)> F; int N; public: Ruiseki(ll INI,const vector<ll> &a,function<ll(ll,ll)> f){ N=a.size();F=f; LEFT.resize(N+1);RIGHT.resize(N+1); LEFT[0]=RIGHT[0]=INI; REP(i,N){ LEFT[i+1]=F(LEFT[i],a[i]); RIGHT[i+1]=F(RIGHT[i],a[N-i-1]); } } ll out(int l,int r){//[l,r)の外の累積 return F(LEFT[l],RIGHT[N-r]); } }; class mint { private: ll _num,_mod; mint set(ll num){ _num = num ; if(_num>=0) _num%=_mod; else _num+=(1-(_num+1)/_mod)*_mod; return *this; } ll imod(ll n){return mpow(n , _mod-2);} public: mint(){ _num = 0;_mod=mod; } mint(ll num){ _mod = mod; _num = (num+(1LL<<25)*mod) % mod; } mint(ll num,ll M){ _mod=M;_num=(num+(1LL<<25)*mod)%_mod; } mint(const mint &cp){_num=cp._num;_mod=cp._mod;} mint operator= (const ll x){ return set(x); } mint operator+ (const ll x){ return mint(_num + (x % _mod) , _mod); } mint operator- (const ll x){ return mint(_num - (x % _mod), _mod); } mint operator* (const ll x){ return mint(_num * (x % _mod) , _mod); } mint operator/ (ll x){ return mint(_num * imod(x) , _mod);} mint operator+=(const ll x){ return set(_num + (x % _mod)); } mint operator-=(const ll x){ return set(_num - (x % _mod)); } mint operator*=(const ll x){ return set(_num * (x % _mod)); } mint operator/=(ll x){ return set(_num * imod(x));} mint operator+ (const mint &x){ return mint(_num + x._num , _mod); } mint operator- (const mint &x){ return mint(_num - x._num , _mod);} mint operator* (const mint &x){ return mint(_num * x._num , _mod); } mint operator/ (mint x){ return mint(_num * imod(x._num) , _mod);} mint operator+=(const mint &x){ return set(_num + x._num); } mint operator-=(const mint &x){ return set(_num - x._num); } mint operator*=(const mint &x){ return set(_num * x._num); } mint operator/=(mint x){ return set(_num * imod(x._num));} bool operator<(const mint &x){return _num<x._num;} friend mint operator+(ll x,const mint &m){return mint(m._num + (x % m._mod) , m._mod);} friend mint operator-(ll x,const mint &m){return mint(m._num - (x % m._mod) , m._mod);} friend mint operator*(ll x,const mint &m){return mint(m._num * (x % m._mod) , m._mod);} friend mint operator/(ll x,mint m){return mint(m.imod(m._num) * x , m._mod);} explicit operator ll() { return _num; } explicit operator int() { return (int)_num; } friend ostream& operator<<(ostream &os, const mint &x){ os << x._num; return os; } friend istream& operator>>(istream &is, mint &x){ll val; is>>val; x.set(val); return is;} }; template<typename T> class MAT{ private: int row,col; vector<vector<T>> _A; MAT set(vector<vector<T>> A){_A = A ; return *this;} public: MAT(){ } MAT(int n,int m){ if(n<1 || m<0){cout << "err Matrix::Matrix" <<endl;exit(1);} row = n; col = m?m:n;//m=0のとき単位行列を作る REP(i,row){ vector<T> a(col); _A.push_back(a); REP(j,col) _A[i][j]=0; } // 値の初期化 if(m==0) REP(i,n) _A[i][i]=1.0; } MAT(const MAT &cp){_A=cp._A;row=cp.row;col=cp.col;} T* operator[] (int i){return _A[i].data();} MAT operator= (vector<vector<T>> x) {return set(x);} MAT operator+ (MAT x) { if(row!=x.row || col!=x.col){ cout << "err Matrix::operator+" <<endl; cout << " not equal matrix size" <<endl; exit(0); } MAT r(row, col); REP(i,row) REP(j,col) r[i][j]=_A[i][j]+x[i][j]; return r; } MAT operator- (MAT x) { if(row!=x.row || col!=x.col){ cout << "err Matrix::operator-" <<endl; cout << " not equal matrix size" <<endl; exit(0); } MAT r(row, col); REP(i,row) REP(j,col) r[i][j]=_A[i][j]-x[i][j]; return r; } MAT operator* (MAT x) { if(col!=x.row){ cout << "err Matrix::operator*" <<endl; cout << " not equal matrix size" <<endl; exit(0); } MAT r(row, x.col); REP(i,row) REP(j,x.col) REP(k,col) r[i][j]+=_A[i][k]*x[k][j]; return r; } MAT operator/ (T a){ MAT r(row,col); REP(i,row) REP(j,col) r[i][j]=_A[i][j]/a; return r; } MAT operator^ (ll n){ if(row!=col){ cout << "err Matrix::operator^" <<endl; cout << " not equal matrix size" <<endl; exit(0); } MAT r(row,0),A=*this; while(n){ if(n&1) r *= A; A*=A; n>>=1; } return r; } MAT operator+= (MAT x) { if(row!=x.row || col!=x.col){ cout << "err Matrix::operator+=" <<endl; cout << " not equal matrix size" <<endl; exit(0); } MAT r(row, col); REP(i,row) REP(j,col) r[i][j]=_A[i][j]+x[i][j]; return set(r._A); } MAT operator-= (MAT x) { if(row!=x.row || col!=x.col){ cout << "err Matrix::operator-=" <<endl; cout << " not equal matrix size" <<endl; exit(0); } MAT r(row, col); REP(i,row) REP(j,col) r[i][j]=_A[i][j]-x[i][j]; return set(r._A); } MAT operator*= (MAT x) { if(col!=x.row){ cout << "err Matrix::operator*" <<endl; cout << " not equal matrix size" <<endl; exit(0); } MAT r(row, x.col); REP(i,row) REP(j,x.col) REP(k,col) r[i][j]+=_A[i][k]*x[k][j]; return set(r._A); } MAT operator/=(T a){ MAT r(row,col); REP(i,row) REP(j,col) r[i][j]=_A[i][j]/a; return r; } friend MAT operator* (T n,MAT x){ MAT r(x.row,x.col); REP(i,x.row) REP(j,x.col) r[i][j]=n*x[i][j]; return r; } friend MAT operator* (MAT x,T n){ MAT r(x.row,x.col); REP(i,x.row) REP(j,x.col) r[i][j]=n*x[i][j]; return r; } explicit operator vector<vector<T>>(){return _A;} friend ostream &operator<<(ostream &os,const MAT &x){ REP(i,x.row) REP(j,x.col) os<<x._A[i][j]<<" \n"[j==x.col-1]; return os;} friend istream &operator>>(istream &is,MAT &x){REP(i,x.row) REP(j,x.col) is>>x._A[i][j];return is;} int size_row(){return row;} int size_col(){return col;} MAT transpose(){ MAT r(col,row); REP(i,col) REP(j,row) r[i][j]=_A[j][i]; return r; } MAT inverse(){ T buf; MAT<T> inv_a(row,0); vector<vector<T>> a=_A; //掃き出し法 REP(i,row){ buf=1/a[i][i]; REP(j,row){ a[i][j]*=buf; inv_a[i][j]*=buf; } REP(j,row){ if(i!=j){ buf=a[j][i]; REP(k,row){ a[j][k]-=a[i][k]*buf; inv_a[j][k]-=inv_a[i][k]*buf; } } } } return inv_a; } // O( n^3 ). int rank() { vector<vector<T>> A=_A; const int n = row, m = col; int r = 0; for(int i = 0; r < n && i < m; ++i) { int pivot = r; for(int j = r+1; j < n; ++j) if(abs(A[j][i]) > abs(A[pivot][i])) pivot = j; swap(A[pivot], A[r]); if(abs(A[r][i]) < eps) continue; for (int k = m-1; k >= i; --k) A[r][k] /= A[r][i]; rep(j,r+1,n) rep(k,i,m) A[j][k] -= A[r][k] * A[j][i]; ++r; } return r; } }; class UnionFind{//UnionFind木 private: vector<int> Parent; vector<ll> diff_weight; public: UnionFind(int N){ Parent.resize(N,-1); diff_weight.resize(N,0LL); } int root(int A){ if(Parent[A]<0) return A; else{ int r = root(Parent[A]); diff_weight[A] += diff_weight[Parent[A]]; // 累積和をとる return Parent[A]=r; } } bool issame(int A,int B){ return root(A)==root(B); } ll weight(int x) { root(x); // 経路圧縮 return diff_weight[x]; } ll diff(int x, int y) { return weight(y) - weight(x); } int size(int A){ return -Parent[root(A)]; } bool connect(int A,int B){ A=root(A); B=root(B); if(A==B) return false; if(size(A)<size(B)) swap(A,B); Parent[A]+=Parent[B]; Parent[B]=A; return true; } bool merge(int A, int B, ll w) { // x と y それぞれについて、 root との重み差分を補正 w += weight(A); w -= weight(B); A=root(A); B=root(B); if(A==B) return false; if(size(A)<size(B)) swap(A,B),w=-w; Parent[A]+=Parent[B]; Parent[B]=A; // x が y の親になるので、x と y の差分を diff_weight[y] に記録 diff_weight[B] = w; return true; } }; class Factorial{//階乗とその逆元を求めて計算に利用するクラス private: vector<ll> fac; vector<ll> ifac; public: Factorial(ll N){ fac.push_back(1); REP(i,N) fac.push_back(fac[i]*(i+1)%mod); ifac.resize(N+1); ifac[N]=inv_mod(fac[N]); REP(i,N) ifac[N-1-i]=(ifac[N-i]*(N-i))%mod; } ll fact(ll a){return fac[a];} ll ifact(ll a){return ifac[a];} ll cmb(ll a,ll b){ if(a==0&&b==0) return 1; if(a<b||a<0||b<0) return 0; ll tmp =ifact(a-b)*ifact(b)%mod; return tmp*fac[a]%mod; } ll per(ll a,ll b){ if(a==0&&b==0) return 1; if(a<b||a<0||b<0) return 0; return fac[a]*ifac[a-b]%mod; } }; class SOSU{ private: vector<ll> Prime_Number; public: SOSU(int N){ set<ll> arr; REP(i,N-1) arr.insert(i+2); while(int n=*arr.begin()){ if(n>sqrt(N)) break; Prime_Number.push_back(n); rep(i,1,N/n+1) arr.erase(n*i); } ITR(itr,arr) Prime_Number.push_back(*itr); } ll operator[](int i){return Prime_Number[i];} int size(){return Prime_Number.size();} ll back(){return Prime_Number.back();} bool isPrime(int q){return binary_search(All(Prime_Number),q);} }; class Divisor{//素因数分解をしてから約数列挙、分解結果はP(底,指数)でpfacにまとめている private: set<ll> factorize; vector<ll> F; vector<P> pfactorize; public: Divisor(ll N){ for(ll i=1; i*i<=N ; i++){ if(N%i == 0){ F.push_back(i); if(i*i != N) F.push_back(N/i); } } sort(All(F)); SOSU p(SQRT(N)+1); REP(i,p.size()){ pfactorize.push_back(P(p[i],0)); while(N%p[i]==0){ N/=p[i]; pfactorize.back().second++; } if(pfactorize.size()==0) pfactorize.pop_back(); } if(N>1) pfactorize.push_back(P(N,1)); } void init(int i,ll res){ if(i==pfactorize.size()){ factorize.insert(res); return; } REP(j,pfactorize[i].second+1){ init(i+1,res*npow(pfactorize[i].first,j)); } return; } int size(){return F.size();} vector<P> pfac(){return pfactorize;} ll operator[](int k){return F[k];} }; struct Solutions{ ll napsack(int kinds,int MAX_W,const vl &weight,const vl &cost){ vector<vector<ll>> dp(kinds+1,vector<ll>(MAX_W+1,0)); REP(i,kinds) REP(j,MAX_W+1){ if(j<weight[i]) dp[i+1][j]=dp[i][j]; else dp[i+1][j]=max(dp[i][j],dp[i][j-weight[i]]+cost[i]); } return dp[kinds][MAX_W]; } ll cost_based_napsack(int kinds,int MAX_W,const vl &weight,const vl &cost){ int MAX_V=0; REP(i,kinds) MAX_V=max(MAX_V,(int)cost[i]); vvl dp(kinds+1,vl(kinds*MAX_V+1,1LL<<58)); dp[0][0] = 0; REP(i,kinds) REP(j,kinds*MAX_V+1){ if(j<cost[i]) dp[i+1][j]=dp[i][j]; else dp[i+1][j] = min(dp[i][j],dp[i][j-cost[i]]+weight[i]); } int res=0; REP(i,kinds*MAX_V+1) if(dp[kinds][i]<=MAX_W) res=i; return res; } ll unlimited_napsack(int kinds,int MAX_W,const vl &weight,const vl &cost){ vector<vector<ll>> dp(kinds+1,vector<ll>(MAX_W+1,0)); REP(i,kinds) REP(j,MAX_W+1){ if(j<weight[i]) dp[i+1][j]=dp[i][j]; else dp[i+1][j]=max(dp[i][j],dp[i+1][j-weight[i]]+cost[i]); } return dp[kinds][MAX_W]; } ll huge_napsack(int kinds,ll MAX_W,const vl &weight,const vl &cost){ int n2=kinds/2; vector<P> ps(1<<(kinds/2)); REP(i,1<<n2){ ll sw=0,sv=0; REP(j,n2){ if(i>>j&1){ sw += weight[j]; sv += cost[j]; } } ps[i] = P(sw,sv); } sort(ps.begin(),ps.begin() + (1<<n2) ); int m=1; rep(i,1,1<<n2){ if(ps[m-1].second<ps[i].second) ps[m++] = ps[i]; } ll res=0; REP(i,1<<(kinds-n2)){ ll sw=0,sv=0; REP(j,kinds-n2){ if((i>>j)&1){ sw += weight[n2+j]; sv += cost[n2+j]; } } if(sw<=MAX_W){ ll tv = (lower_bound(ps.begin(),ps.begin()+m,P(MAX_W-sw,LLONG_MAX))-1)->second; res = max(res,sv+tv); } } return res; } ll choose_MonN(int N,int M,const vl &cost){ vvl dp(N+1,vl(M+1,-1LL<<58)); REP(i,N+1) dp[i][0]=0; REP(i,N) REP(j,M){ if(j>i) break; dp[i+1][j+1]=max(dp[i][j+1],dp[i][j]+cost[i]); } return dp[N][M]; } ll Partition_Func(int n,int k){ vector<vector<ll>> dp(k+1,vector<ll> (n+1,0)); dp[0][0]=1; rep(i,1,k+1) REP(j,n+1){ if(j-i>=0) dp[i][j]=(dp[i][j-i]+dp[i-1][j]); else dp[i][j]=dp[i-1][j]; } return dp[k][n]; } int LCS(string s,string t){ int n=s.length(),m=s.length(); vector<vector<int>> dp(n+1,vector<int>(m+1)); REP(i,n) REP(j,m){ if (s[i] == t[j]) dp[i+1][j+1] = dp[i][j] + 1; else dp[i+1][j+1] = max(dp[i][j+1], dp[i+1][j]); } return dp[n][m]; } int LIS(const vector<ll> a){ int n=a.size(); ll INF=1<<28; vector<ll> dp(n+1,INF); REP(i,n) *lower_bound(All(dp),a[i])=a[i]; int k=lower_bound(All(dp),INF)-dp.begin(); return k; } int max_flow(int s,int t,const vector<vector<P>> &g){ struct edge_{int to,cap, rev;}; vector<bool> used(g.size(),false); vector<vector<edge_>> G(g.size()); REP(i,g.size()) REP(j,g[i].size()){ int from = i, to = g[i][j].second; int cap = g[i][j].first; G[from].push_back((edge_){to,cap,(int)G[to].size()}); G[to].push_back((edge_){from,0,(int)G[from].size()-1}); } auto dfs = [&](auto&& f,int v,int t,int fl)->int{ if(v==t) return fl; used[v] = true; REP(i,G[v].size()){ edge_ &e = G[v][i]; if(!used[e.to] && e.cap>0){ int d = f(f, e.to,t,min(fl,e.cap)); if(d>0){ e.cap -= d; G[e.to][e.rev].cap += d; return d; } } } return 0; }; int flow=0; while(1){ used.assign(used.size(),false); int f = dfs(dfs,s,t,INT_MAX); if(f==0) return flow; flow += f; } } int bipartite_matching_calculate(const Graph &g){ int V = g.size(); vi match(V,-1); vector<bool> used(V,false); auto dfs = [&](auto&& f,int v)->bool{ used[v]=true; REP(i,g[v].size()){ int u = g[v][i], w = match[u]; if(w<0 || !used[w] && f(f,w)){ match[v]=u; match[u]=v; return true; } } return false; }; int res=0; REP(v,V){ if(match[v] < 0){ used.assign(V,false); if(dfs(dfs,v)) res++; } } return res; } int bipartite_matching(int l,int r,function<bool(int,int)> F){ int V = l+r; Graph G(V); REP(i,l) REP(j,r) if(F(i,j)){ G[i].push_back(l+j); G[l+j].push_back(i); } return bipartite_matching_calculate(G); } }; struct edge{ int from;int to;ll cost; void push(int a,int b,int c){ from=a;to=b;cost=c; } bool operator<(const edge& y) const{ if(cost!=y.cost) return cost<y.cost; else if(to!=y.to) return to<y.to; else return from<y.from;} bool operator>(const edge& y) const{ if(cost!=y.cost) return cost>y.cost; else if(to!=y.to) return to>y.to; else return from>y.from;} bool operator==(const edge& y) const{return *this==y;} }; class lca { public: const int n = 0; const int log2_n = 0; std::vector<std::vector<int>> parent; std::vector<int> depth; lca() {} lca(const Graph &g, int root) : n(g.size()), log2_n(log2(n) + 1), parent(log2_n, std::vector<int>(n)), depth(n) { dfs(g, root, -1, 0); for (int k = 0; k + 1 < log2_n; k++) { for (int v = 0; v < (int)g.size(); v++) { if (parent[k][v] < 0) parent[k + 1][v] = -1; else parent[k + 1][v] = parent[k][parent[k][v]]; } } } void dfs(const Graph &g, int v, int p, int d) { parent[0][v] = p; depth[v] = d; REP(j,g[v].size()) { if (g[v][j] != p) dfs(g, g[v][j], v, d + 1); } } int get(int u, int v) { if (depth[u] > depth[v]) std::swap(u, v); for (int k = 0; k < log2_n; k++) { if ((depth[v] - depth[u]) >> k & 1) { v = parent[k][v]; } } if (u == v) return u; for (int k = log2_n - 1; k >= 0; k--) { if (parent[k][u] != parent[k][v]) { u = parent[k][u]; v = parent[k][v]; } } return parent[0][u]; } }; template <typename T,typename E> //SegmentTree((要素数) int n_,(演算) F f,(更新) G g,(初期値) T d1) struct SegmentTree{ typedef function<T(T,T)> F; typedef function<T(T,E)> G; int n; F f; G g; T d1; E d0; vector<T> dat; SegmentTree(){}; SegmentTree(int n_,F f,G g,T d1, vector<T> v=vector<T>()): f(f),g(g),d1(d1){ init(n_); if(n_==(int)v.size()) build(n_,v); } void init(int n_){ n=1; while(n<n_) n*=2; dat.clear(); dat.resize(2*n-1,d1); } void build(int n_, vector<T> v){ for(int i=0;i<n_;i++) dat[i+n-1]=v[i]; for(int i=n-2;i>=0;i--) dat[i]=f(dat[i*2+1],dat[i*2+2]); } void update(int k,E a){ k+=n-1; dat[k]=g(dat[k],a); while(k>0){ k=(k-1)/2; dat[k]=f(dat[k*2+1],dat[k*2+2]); } } inline T query(int a,int b){ T vl=d1,vr=d1; for(int l=a+n,r=b+n;l<r;l>>=1,r>>=1) { if(l&1) vl=f(vl,dat[(l++)-1]); if(r&1) vr=f(dat[(--r)-1],vr); } return f(vl,vr); } }; int main(){ ll N,K;cin>>N>>K; Divisor d(K); ll ans=0; ll n=d.size(); REP(i,n){ ll LMAX=min(d[i]-1,N),LMIN=max(1LL,d[i]-N); ll RMAX=min(d[n-i-1]-1,N),RMIN=max(1LL,d[n-i-1]-N); ans+=max((LMAX-LMIN+1)*(RMAX-RMIN+1),0LL); //cout<<d[i]<<" "<<d[n-i-1]<<" "<<ans<<endl; } cout<<ans<<endl; }