#include using namespace std; typedef long long signed int LL; typedef long long unsigned int LU; #define incID(i, l, r) for(LL i = (l) ; i < (r); ++i) #define incII(i, l, r) for(LL i = (l) ; i <= (r); ++i) #define decID(i, l, r) for(LL i = (r) - 1; i >= (l); --i) #define decII(i, l, r) for(LL i = (r) ; i >= (l); --i) #define inc(i, n) incID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec(i, n) decID(i, 0, n) #define dec1(i, n) decII(i, 1, n) #define inID(v, l, r) ((l) <= (v) && (v) < (r)) #define inII(v, l, r) ((l) <= (v) && (v) <= (r)) #define PB push_back #define EB emplace_back #define MP make_pair #define FI first #define SE second #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() template bool setmin (T & a, T b) { if(b < a) { a = b; return true; } else { return false; } } template bool setmax (T & a, T b) { if(b > a) { a = b; return true; } else { return false; } } template bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } } template bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } } LL mo(LL a, LL b) { assert(b > 0); a %= b; if(a < 0) { a += b; } return a; } LL fl(LL a, LL b) { assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); } LL ce(LL a, LL b) { assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); } template T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); } template T lcm(T a, T b) { return a / gcd(a, b) * b; } #define bit(b, i) (((b) >> (i)) & 1) #define BC __builtin_popcountll #define SC static_cast #define SI(v) SC(v.size()) #define SL(v) SC(v.size()) #define RF(e, v) for(auto & e: v) #define ef else if #define UR assert(false) // ---- ---- template class RPQ : public priority_queue, greater> { }; template void dijkstra(int s, vector> g[], C d[]) { RPQ> q; d[s] = 0; q.emplace(d[s], s); while(! q.empty()) { C c = q.top().FI; int v = q.top().SE; q.pop(); if(d[v] != c) { continue; } for(auto & e : g[v]) { int ev = e.FI; C ec = e.SE; if(setmin(d[ev], d[v] + ec)) { q.emplace(d[ev], ev); } } } } const int M = 251; const int L = 250; int h, w, gi, gj, a[M][M], q, d[L + 1][M * M], INF = 1e9; int id(int i, int j) { return (w + 1) * i + j; } int main() { cin >> h >> w >> gi >> gj; gi--; gj--; inc(i, h) { inc(j, w) { cin >> a[i][j]; } } inc1(k, L) { vector> g[M * M]; g[id(h, w)].EB(id(gi, gj), a[gi][gj] + k * k); inc(i, h) { inc(j, w) { g[id(i, j)].EB(id(i + 1, j), a[i + 1][j] + k * k); g[id(i, j)].EB(id(i, j + 1), a[i][j + 1] + k * k); g[id(i + 1, j)].EB(id(i, j), a[i][j] + k * k); g[id(i, j + 1)].EB(id(i, j), a[i][j] + k * k); } } inc(i, h + 1) { inc(j, w + 1) { d[k][id(i, j)] = INF; } } dijkstra(id(h, w), g, d[k]); } cin >> q; inc(qq, q) { int si, sj, k; cin >> si >> sj >> k; si--; sj--; int p = abs(si - gi) + abs(sj - gj) + 1; cout << d[min(k, L)][id(si, sj)] + (k < L ? 0 : p * (k * k - L * L)) << "\n"; } return 0; }