#include #define MOD 1000000007 int ri() { int n; scanf("%d", &n); return n; } template struct ModInt{ int x; ModInt():x(0){} ModInt(long long y):x(y>=0?y%mod:(mod-(-y)%mod)%mod){} ModInt &operator+=(const ModInt &p){ if((x+=p.x)>=mod)x-=mod; return *this; } ModInt &operator-=(const ModInt &p){ if((x+=mod-p.x)>=mod)x-=mod; return *this; } ModInt &operator*=(const ModInt &p){ x=(int)(1LL*x*p.x%mod); return *this; } ModInt &operator/=(const ModInt &p){ *this*=p.inverse(); return *this; } ModInt &operator^=(long long p){ ModInt res = 1; for (; p; p >>= 1) { if (p & 1) res *= *this; *this *= *this; } return *this = res; } ModInt operator-()const{return ModInt(-x);} ModInt operator+(const ModInt &p)const{return ModInt(*this)+=p;} ModInt operator-(const ModInt &p)const{return ModInt(*this)-=p;} ModInt operator*(const ModInt &p)const{return ModInt(*this)*=p;} ModInt operator/(const ModInt &p)const{return ModInt(*this)/=p;} ModInt operator^(long long p)const{return ModInt(*this)^=p;} bool operator==(const ModInt &p)const{return x==p.x;} bool operator!=(const ModInt &p)const{return x!=p.x;} explicit operator int() const { return x; } // added by QCFium ModInt operator=(const int p) {x = p; return ModInt(*this);} // added by QCFium ModInt inverse()const{ int a=x,b=mod,u=1,v=0,t; while(b>0){ t=a/b; a-=t*b; std::swap(a,b); u-=t*v; std::swap(u,v); } return ModInt(u); } friend std::ostream &operator<<(std::ostream &os,const ModInt &p){ return os<>(std::istream &is,ModInt &a){ long long x; is>>x; a=ModInt(x); return (is); } }; typedef ModInt mint; mint solve(int h, int w) { if (h < w) std::swap(h, w); std::vector pf_table(h + 1); for (int i = 2; i <= h; i++) if (!pf_table[i]) for (int j = i; j <= h / i; j++) pf_table[j * i] = i; mint res = mint(h) * (w - 1) + mint(w) * (h - 1); for (int i = 1; i < w; i++) { std::vector facts; for (int cur = i; ; ) { if (!pf_table[cur]) { if (cur > 1) facts.push_back(cur); break; } facts.push_back(pf_table[cur]); cur /= pf_table[cur]; } std::sort(facts.begin(), facts.end()); facts.erase(std::unique(facts.begin(), facts.end()), facts.end()); int n_fact = facts.size(); int prod[1 << n_fact]; for (int j = 0; j < n_fact; j++) prod[1 << j] = facts[j]; prod[0] = 1; for (int j = 1; j < 1 << n_fact; j++) prod[j] = prod[j & j - 1] * prod[j & ~(j - 1)]; mint so_num = 0; mint so_sum = 0; for (int i = 0; i < 1 << n_fact; i++) { int num = (h - 1) / prod[i]; mint sum = mint(num) * (num + 1) / 2 * prod[i]; if (__builtin_popcount(i) & 1) so_num -= num, so_sum -= sum; else so_num += num, so_sum += sum; } res += mint(2) * (w - i) * (so_num * h - so_sum); } return res; } int main() { int h = ri(), w = ri(); std::cout << solve(h, w) << std::endl; return 0; }