#include #include #include using namespace std; //----------------------- const int MOD = (int)1e9 + 7; struct mint { int n; mint(int n = 0) : n(n) { } }; mint operator+(mint a, mint b) { return (a.n += b.n) >= MOD ? a.n - MOD : a.n; } mint operator-(mint a, mint b) { return (a.n -= b.n) < 0 ? a.n + MOD : a.n; } mint operator*(mint a, mint b) { return 1LL * a.n * b.n % MOD; } mint &operator+=(mint &a, mint b) { return a = a + b; } mint &operator-=(mint &a, mint b) { return a = a - b; } mint &operator*=(mint &a, mint b) { return a = a * b; } ostream &operator<<(ostream &os, mint a) { return os << a.n; } istream &operator>>(istream &is, mint& a) { return is >> a.n; } mint operator^(mint a, long long n) { mint r = 1; while (n) { if (n & 1) r *= a; a *= a; n >>= 1; } return r; } mint inv(mint x) { long long a = x.n, b = MOD, u = 1, v = 0; while (b) { long long t = a/b; swap((a -= t*b), b); swap((u -= t*v), v); } return mint(u); } //----------------------- template ostream& operator<<(ostream& os, const vector& vec) { for (auto &vi: vec) os << vi << " "; return os; } template struct Matrix { vector> val; Matrix(int n = 1, int m = 1, T x = 0) { val.assign(n, vector(m, x)); } size_t size() const { return val.size(); } vector& operator[](int i) { return val[i]; } const vector& operator[](int i) const { return val[i]; } friend ostream& operator<<(ostream& os, const Matrix M) { for (int i = 0; i < M.size(); ++i) os << M[i] << " \n"[i != M.size() - 1]; return os; } }; template Matrix operator^(Matrix A, long long n) { Matrix R(A.size(), A.size()); for (int i = 0; i < A.size(); ++i) R[i][i] = 1; while (n > 0) { if (n & 1) R = R * A; A = A * A; n >>= 1; } return R; } template Matrix operator*(const Matrix& A, const Matrix& B) { Matrix R(A.size(), B[0].size()); for (int i = 0; i < A.size(); ++i) for (int j = 0; j < B[0].size(); ++j) for (int k = 0; k < B.size(); ++k) R[i][j] += A[i][k] * B[k][j]; return R; } template vector operator*(const Matrix &A, vector &B) { vector v(A.size()); for (int i = 0; i < A.size(); ++i) for (int k = 0; k < B.size(); ++k) v[i] += A[i][k] * B[k]; return v; } const int SZ = 10; string M[SZ] = { "1000000000", "1111110000", "1111010000", "1111011000", "1100110010", "1111111100", "1001011010", "1000101100", "0000010010", "0111111011", }; int main() { long long N; cin >> N; Matrix trans(SZ, SZ); for (int i = 0; i < SZ; i++) for (int j = 0; j < SZ; j++) { trans[i][j] = M[i][j] - '0'; } vector state(SZ); state[0] = 1; cout << ((trans ^ (N + 1)) * state)[SZ - 1] << endl; return 0; }