#include #include #include #include #include #include #include #include #include #include #include static const int MOD = 1000000007; using ll = long long; using u32 = uint32_t; using namespace std; template constexpr T INF = ::numeric_limits::max()/32*15+208; template vector make_v(U size, const T& init){ return vector(static_cast(size), init); } template auto make_v(U size, Ts... rest) { return vector(static_cast(size), make_v(rest...)); } template void chmin(T &a, const T &b){ a = (a < b ? a : b); } template void chmax(T &a, const T &b){ a = (a > b ? a : b); } template struct modint { ll val; modint(const ll x = 0) : val(x) { val = x; while(val < 0) val += M; while(val > M) val -= M; } modint operator+(const modint a) const { return modint(*this) += a; } modint operator-(const modint a) const { return modint(*this) -= a; } modint operator*(const modint a) const { return modint(*this) *= a; } modint operator/(const modint a) const { return modint(*this) /= a; } modint operator-() const { return modint(M-val); } modint inv() const { ll u = 1, v = 0, s = 0, t = 1, m = M, x = val; while (x) {ll q = m/x; swap(s -= q*u, u); swap(t -= q*v, v); swap(m -= q*x, x); } if(s < 0) s += M; return modint(s); } modint pow(ll n) const { ll u = 1, xx = val; while (n > 0){ if (n&1) u = u * xx % M; xx = xx * xx % M; n >>= 1; } return modint(u); } modint& operator+=(const modint a){ val += a.val; if(val >= M) val -= M; return *this; } modint& operator-=(const modint a){ val -= a.val; if(val < 0) val += M; return *this; } modint& operator*=(const modint a){ val = val * a.val % M; return *this; } modint& operator/=(const modint a){ val = val * a.inv().val % M; return *this;} modint& operator=(const int& x){ val = x; while(val < 0) val += M; while(val > M) val -= M; return *this; } }; using mint = modint; int main() { int n; cin >> n; auto dp = make_v(4, n+1, mint(0)); dp[0][0] = 1; for (int i = 1; i <= n; ++i) { for (int j = 0; j <= 3; ++j) { for (int k = 1; k <= min(3, i); ++k) { if(j == k) continue; dp[k][i] += dp[j][i-k]; } } } cout << (dp[1][n] + dp[2][n] + dp[3][n]).val << "\n"; return 0; }