#pragma region #pragma GCC optimize ("O3") #pragma GCC target ("sse4") #include //#include //#include //#include using namespace std; //using namespace __gnu_pbds; //using namespace __gnu_cxx; typedef long long ll; typedef long double ld; typedef complex cd; typedef pair pi; typedef pair pl; typedef pair pd; typedef vector vi; typedef vector vd; typedef vector vl; typedef vector vpi; typedef vector vpl; typedef vector vcd; //template using Tree = tree, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i = (a); i < (b); i++) #define F0R(i, a) for (int i = 0; i < (a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= (a); i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define trav(a, x) for (auto& a : x) #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define sz(x) (int)x.size() #define all(x) begin(x), end(x) #define rsz resize const int MOD = 1000000007; // 998244353 const ll INF = 1e18; const int MX = 200005; const ld PI = 4*atan((ld)1); template void chmin(T &a, T b) { a = min(a, b); } template void chmax(T &a, T b) { a = max(a, b); } namespace input { template void re(complex& x); template void re(pair& p); template void re(vector& a); template void re(array& a); template void re(T& x) { cin >> x; } void re(double& x) { string t; re(t); x = stod(t); } void re(ld& x) { string t; re(t); x = stold(t); } template void re(Arg& first, Args&... rest) { re(first); re(rest...); } template void re(complex& x) { T a,b; re(a,b); x = cd(a,b); } template void re(pair& p) { re(p.f,p.s); } template void re(vector& a) { F0R(i,sz(a)) re(a[i]); } template void re(array& a) { F0R(i,SZ) re(a[i]); } } using namespace input; namespace output { template void pr(const pair& x); template void pr(const array& x); template void pr(const vector& x); template void pr(const set& x); template void pr(const map& x); template void pr(const T& x) { cout << x; } template void pr(const Arg& first, const Args&... rest) { pr(first); pr(rest...); } template void pr(const pair& x) { pr("{",x.f,", ",x.s,"}"); } template void prContain(const T& x) { pr("{"); bool fst = 1; for (const auto& a: x) pr(!fst?", ":"",a), fst = 0; // const needed for vector pr("}"); } template void pr(const array& x) { prContain(x); } template void pr(const vector& x) { prContain(x); } template void pr(const set& x) { prContain(x); } template void pr(const map& x) { prContain(x); } void ps() { pr("\n"); } template void ps(const Arg& first) { pr(first); ps(); // no space at end of line } template void ps(const Arg& first, const Args&... rest) { pr(first," "); ps(rest...); // print w/ spaces } } using namespace output; namespace io { void setIn(string s) { freopen(s.c_str(),"r",stdin); } void setOut(string s) { freopen(s.c_str(),"w",stdout); } void setIO(string s = "") { ios_base::sync_with_stdio(0); cin.tie(0); // fast I/O if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO } } using namespace io; template T invGeneral(T a, T b) { a %= b; if (a == 0) return b == 1 ? 0 : -1; T x = invGeneral(b,a); return x == -1 ? -1 : ((1-(ll)b*x)/a+b)%b; } template struct modular { T val; explicit operator T() const { return val; } modular() { val = 0; } modular(const ll& v) { val = (-MOD <= v && v <= MOD) ? v : v % MOD; if (val < 0) val += MOD; } // friend ostream& operator<<(ostream& os, const modular& a) { return os << a.val; } friend void pr(const modular& a) { pr(a.val); } friend void re(modular& a) { ll x; re(x); a = modular(x); } friend bool operator==(const modular& a, const modular& b) { return a.val == b.val; } friend bool operator!=(const modular& a, const modular& b) { return !(a == b); } friend bool operator<(const modular& a, const modular& b) { return a.val < b.val; } modular operator-() const { return modular(-val); } modular& operator+=(const modular& m) { if ((val += m.val) >= MOD) val -= MOD; return *this; } modular& operator-=(const modular& m) { if ((val -= m.val) < 0) val += MOD; return *this; } modular& operator*=(const modular& m) { val = (ll)val*m.val%MOD; return *this; } friend modular pow(modular a, ll p) { modular ans = 1; for (; p; p /= 2, a *= a) if (p&1) ans *= a; return ans; } friend modular inv(const modular& a) { auto i = invGeneral(a.val,MOD); assert(i != -1); return i; } // equivalent to return exp(b,MOD-2) if MOD is prime modular& operator/=(const modular& m) { return (*this) *= inv(m); } friend modular operator+(modular a, const modular& b) { return a += b; } friend modular operator-(modular a, const modular& b) { return a -= b; } friend modular operator*(modular a, const modular& b) { return a *= b; } friend modular operator/(modular a, const modular& b) { return a /= b; } }; typedef modular mi; typedef pair pmi; typedef vector vmi; typedef vector vpmi; mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); #pragma endregion template struct Seg { // SZ should be power of 2 T ID = id(); // comb(ID,b) must equal b T id() { return {MOD, MOD}; } T make(int x, int i) { return {x, i}; } T comb(T a, T b) { T ans = {MOD, MOD}; if (a.f < ans.f) { ans.f = a.f; ans.s = a.s; } if (b.f < ans.f) { ans.f = b.f; ans.s = b.s; } return ans; } // easily change this to min or max T seg[2*SZ]; Seg() { memset(seg,0,sizeof seg); } void build() { FORd(i,1,SZ) seg[i] = comb(seg[2*i],seg[2*i+1]); } void upd(int p, T value) { // set value at position p seg[p += SZ] = value; for (p /= 2; p; p /= 2) seg[p] = comb(seg[2*p],seg[2*p+1]); } T query(int l, int r) { // sum on interval [l, r] r ++; T lres = id(), rres = id(); // make sure non-commutative operations work for (l += SZ, r += SZ; l < r; l /= 2, r /= 2) { if (l&1) lres = comb(lres,seg[l++]); if (r&1) rres = comb(seg[--r],rres); } return comb(lres,rres); } }; typedef pi T; Seg tree; int n, q; vi a; int main() { // setIO("t"); setIO(); re(n, q); a.rsz(n); re(a); F0R(i, n) tree.upd(i+1, tree.make(a[i], i+1)); F0R(i, q) { int t, L, R; re(t, L, R); if (t == 1) { // swap L and R // tree[i] = (x, i) pi xi = tree.query(L, L); pi yj = tree.query(R, R); tree.upd(L, tree.make(yj.f, xi.s)); tree.upd(R, tree.make(xi.f, yj.s)); } else { pi xi = tree.query(L, R); ps(xi.s); } } }