#ifdef DEBUG #define _GLIBCXX_DEBUG #endif #pragma GCC optimize("Ofast") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define stdin_filepath "CON" #define stdout_filepath "stdout.txt" #define stderr_filepath "stderr.txt" #define debug_stream std::cerr #define iostream_untie true #define __precision__ 10 #define rep(i,n) for(int i = 0; i < int(n); ++i) #define all(v) begin(v), end(v) #define rall(v) rbegin(v), rend(v) #define mkp make_pair #define mkt make_tuple #define popcnt __builtin_popcountll using namespace std; using i64 = int_fast64_t; using pii = std::pair; using pll = std::pair; template using heap = std::priority_queue; template using minheap = std::priority_queue, std::greater>; template constexpr T inf = std::numeric_limits::max() / (T)2 - (T)1123456; constexpr int dx[9] = {1, 0, -1, 0, 1, -1, -1, 1, 0}; constexpr int dy[9] = {0, 1, 0, -1, 1, 1, -1, -1, 0}; namespace execution { std::chrono::system_clock::time_point start_time, end_time; void print_elapsed_time() { end_time = std::chrono::system_clock::now(); std::cerr << "\n----- Exec time : "; std::cerr << std::chrono::duration_cast(end_time - start_time).count(); std::cerr << " ms -----\n"; } struct setupper { setupper() { if(iostream_untie) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); // std::cout.tie(nullptr); // std::cerr.tie(nullptr); } std::cout << std::fixed << std::setprecision(__precision__); std::cerr << std::fixed << std::setprecision(__precision__); #ifdef LOCAL if(!freopen(stdout_filepath, "wt", stdout)) { freopen("CON", "wt", stdout); std::cerr << "Failed to open the stdout file\n\n"; } if(!freopen(stdin_filepath, "rt", stdin)) { freopen("CON", "rt", stdin); std::cerr << "Failed to open the stdin file\n\n"; } if(!freopen(stderr_filepath, "wt", stderr)) { freopen("CON", "wt", stderr); std::cerr << "Failed to open the stderr file\n\n"; } std::cout << "", std::cerr << ""; #endif #if defined(LOCAL) || defined(DEBUG) atexit(print_elapsed_time); start_time = std::chrono::system_clock::now(); #endif } } __setupper; } struct myclock_t { std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built; myclock_t() : is_built(false) {} void build(int crt_ln, const std::string &crt_func) { is_built = true; last_pt = built_pt = std::chrono::system_clock::now(); last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) { last_pt = std::chrono::system_clock::now(); last_ln = crt_ln, last_func = crt_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built clock!)\n"; } } void get(int crt_ln, const std::string &crt_func) { if(is_built) { std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now()); int64_t diff = std::chrono::duration_cast(crt_pt - last_pt).count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built clock!)\n"; } } }; #if defined(LOCAL) || defined(DEBUG) myclock_t myclock; #define build_clock() myclock.build(__LINE__, __func__) #define set_clock() myclock.set(__LINE__, __func__) #define get_clock() myclock.get(__LINE__, __func__) #else #define build_clock() #define set_clock() #define get_clock() #endif namespace std { template void rsort(RAitr __first, RAitr __last) { sort(__first, __last, greater<>()); } template size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template struct hash> { size_t operator()(pair const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template ::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc::apply(seed, t), get(t)); } }; template struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template struct hash> { size_t operator()(tuple const &t) const { return tuple_hash_calc>::apply(0, t); } }; template istream &operator>> (std::istream &s, pair &p) { return s >> p.first >> p.second; } template ostream &operator<< (std::ostream &s, const pair p) { return s << p.first << " " << p.second; } template istream &operator>> (istream &s, vector &v) { for(T &e : v) { s >> e; } return s; } template ostream &operator<< (ostream &s, const vector &v) { for(size_t i = 0; i < v.size(); ++i) { s << (i ? " " : "") << v[i]; } return s; } template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { tupleos::apply(s,t); return s << " " << get(t); } }; template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { return s << get<0>(t); } }; template ostream &operator<< (ostream &s, const tuple &t) { return tupleos, tuple_size>::value - 1>::apply(s,t); } template <> ostream &operator<< (ostream &s, const tuple<> &t) { return s; } } #if defined(LOCAL) || defined(DEBUG) #define dump(...) debug_stream << " [ " << __LINE__ << " : " << __FUNCTION__ << " ] " << #__VA_ARGS__ << " : ", dump_func(__VA_ARGS__) #else #define dump(...) #endif template void dump_func(const T &x) { debug_stream << x << '\n'; } template void dump_func(const T &x, Rest ... rest) { debug_stream << x << ","; dump_func(rest...); } template void write(const T &x) { std::cout << x << '\n'; } template void write(const T &x, Rest ... rest) { std::cout << x << ' '; write(rest...); } void writeln() {} template void writeln(const T &x, Rest ... rest) { std::cout << x << '\n'; writeln(rest...); } #define esc(...) writeln(__VA_ARGS__), exit(0) template void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; } template bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; } template bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; } template constexpr T minf(const T &x, const T &y) { return std::min(x,y); } template constexpr T maxf(const T &x, const T &y) { return std::max(x,y); } constexpr bool odd(int_fast64_t n) { return n & 1; } constexpr bool even(int_fast64_t n) { return (int)odd(n) ^ 1; } constexpr bool bit(int_fast64_t n, int e) { return (n >> e) & 1; } constexpr int_fast64_t mask(int_fast64_t n, int e) { return n & ((1 << e) - 1); } constexpr int_fast64_t ilog(int_fast64_t x, int_fast64_t b = 2) { return x ? 1 + ilog(x / b, b) : -1; } constexpr int_fast64_t gcd(int_fast64_t x, int_fast64_t y) { x = x > 0 ? x : -x, y = y > 0 ? y : -y; while(y) x ^= y ^= (x %= y) ^= y; return x; } constexpr int_fast64_t lcm(int_fast64_t x, int_fast64_t y) { return x ? x / gcd(x, y) * y : 0; } int_fast64_t binry(int_fast64_t ok, int_fast64_t ng, const std::function &fn) { while (std::abs(ok - ng) > 1) { int_fast64_t mid = (ok + ng) / 2; (fn(mid) ? ok : ng) = mid; } return ok; } template void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); } template void init(A (&array)[N]) { memset(array, 0, sizeof(array)); } template std::vector cmprs(const std::vector &v) { std::vector tmp = v; std::vector ret; std::sort(tmp.begin(), tmp.end()); tmp.erase(std::unique(tmp.begin(), tmp.end()), tmp.end()); for(const T &i : v) ret.emplace_back(std::lower_bound(tmp.begin(), tmp.end() ,i) - tmp.begin()); return ret; } template std::vector cmprs(const T *__first, const T *__last) { return cmprs(std::vector(__first, __last)); } void for_subset(int_fast64_t s, const std::function &fn) { int_fast64_t t = s; do { fn(t); } while((--t &= s) != s); } /* The main code follows. */ signed main() { void solve(); void input(); void init(); int t = 1; #ifdef LOCAL t = 1; #endif // cin >> t; while(t--) { init(); input(); solve(); } } template class Segtree { std::vector data; public: const std::size_t n, N; using opr_t = std::function; using update_opr_t = std::function; const opr_t opr; const update_opr_t update_opr; const Monoid identity; Segtree(std::size_t _n, const Monoid &_identity, const opr_t &_opr, const update_opr_t &_update_opr) : n(_n), N(_n > 1 ? 1 << (32 - __builtin_clz(_n)) : 1), opr(_opr), update_opr(_update_opr), identity(_identity) { data.assign(N << 1, identity); } Monoid operator[](std::size_t i) { return data[i + N]; } template void copy(P s, P t) { for (std::size_t i = N; s != t; ++s, ++i) data[i] = *s; for (std::size_t i = N - 1; i; --i) data[i] = opr(data[left(i)], data[right(i)]); } template void copy(const A &v) { copy(begin(v), end(v)); } void init(const Monoid &x) { for (std::size_t i = 0; i < N; ++i) data[i + N] = x; for (std::size_t i = N - 1; i; --i) data[i] = opr(data[left(i)], data[right(i)]); } void update(std::size_t idx, const act_t &actor) { update_opr(data[idx += N], actor); while (idx >>= 1) data[idx] = opr(data[idx * 2], data[idx * 2 + 1]); } // operation result of range [a, b). Monoid query(std::size_t a, std::size_t b) const { Monoid lft = identity, rgt = identity; a += N, b += N; while (a < b) { if (a & 1) lft = opr(lft, data[a++]); if (b & 1) rgt = opr(data[--b], rgt); a >>= 1, b >>= 1; } return opr(lft, rgt); } // maximum r where range [idx, r) meets the condition. std::size_t right_bound(std::size_t idx, const std::function &f) { assert(idx < n); std::size_t ret = idx; Monoid now = identity; right_bound(idx, f, 1, 0, N, now, ret); return std::min(ret, n); } // minimum l where range [l, idx) meets the condition. std::size_t left_bound(std::size_t idx, const std::function &f) { assert(idx <= n); std::size_t ret = idx; Monoid now = identity; left_bound(idx, f, 1, 0, N, now, ret); return ret; } private: constexpr std::size_t left(const std::size_t k) { return k * 2; } constexpr std::size_t right(const std::size_t k) { return left(k) ^ 1; } constexpr std::size_t parent(const std::size_t k) { return k >> 1; } constexpr std::size_t sibling(const std::size_t k) { return k ^ 1; } void right_bound(std::size_t idx, const std::function &f, std::size_t k, std::size_t l, std::size_t r, Monoid &now, std::size_t &pos) { if (idx >= r || l > pos) return; const std::size_t mid = (l + r) / 2; if (l >= idx) { Monoid nxt = opr(now, data[k]); if (f(nxt)) { pos = r; now = nxt; return; } } if (r - l > 1) { right_bound(idx, f, left(k), l, mid, now, pos); right_bound(idx, f, right(k), mid, r, now, pos); } } void left_bound(std::size_t idx, const std::function &f, std::size_t k, std::size_t l, std::size_t r, Monoid &now, std::size_t &pos) { if (idx <= l || r < pos) return; const std::size_t mid = (l + r) / 2; if (r <= idx) { Monoid nxt = opr(data[k], now); if (f(nxt)) { pos = l; now = nxt; return; } } if (r - l > 1) { left_bound(idx, f, right(k), mid, r, now, pos); left_bound(idx, f, left(k), l, mid, now, pos); } } }; template class LazySegtree { std::vector data; std::vector lazy; std::vector lazyflag; public: const std::size_t n, N; using opr_t = std::function; using lazy_opr_t = std::function; using update_opr_t = std::function; const opr_t opr; const lazy_opr_t lazy_opr; const update_opr_t update_opr; const Monoid identity, lazy_identity; constexpr std::size_t adjust_size(const std::size_t n) { std::size_t d = 0; for (std::size_t i = 0; i < 30; ++i) if (n >> i & 1) d = i; return 1 << (d + 1); } constexpr std::size_t left(const std::size_t k) { return k * 2; } constexpr std::size_t right(const std::size_t k) { return left(k) ^ 1; } constexpr std::size_t parent(const std::size_t k) { return k >> 1; } constexpr std::size_t sibling(const std::size_t k) { return k ^ 1; } LazySegtree(std::size_t _n, const Monoid &_identity, const Monoid &_lazy_identity, const opr_t &_opr, const lazy_opr_t &_lazy_opr, const update_opr_t &_update_opr) : n(_n), N(_n > 1 ? 1 << (32 - __builtin_clz(_n)) : 1), opr(_opr), lazy_opr(_lazy_opr), update_opr(_update_opr), identity(_identity), lazy_identity(_lazy_identity) { data.assign(N << 1, identity); lazy.assign(N << 1, lazy_identity); lazyflag.assign(N << 1, false); } Monoid operator[](std::size_t i) { return query(i, i + 1); } template void copy(P s, P t) { for (std::size_t i = N; s != t; ++s, ++i) data[i] = *s; for (std::size_t i = N - 1; i; --i) data[i] = opr(data[left(i)], data[right(i)]); } template void copy(A &v) { copy(begin(v), end(v)); } void init(const Monoid &x) { for (std::size_t i = 0; i < N; ++i) data[i + N] = x; for (std::size_t i = N - 1; i; --i) data[i] = opr(data[left(i)], data[right(i)]); } void eval(std::size_t k, std::size_t l, std::size_t r) { if (!lazyflag[k]) return; update_opr(data[k], lazy[k], r - l); if (r - l > 1) { lazy_opr(lazy[left(k)], lazy[k], (r - l) / 2); lazy_opr(lazy[right(k)], lazy[k], (r - l) / 2); lazyflag[left(k)] = lazyflag[right(k)] = true; } lazy[k] = lazy_identity; lazyflag[k] = false; } void update(std::size_t a, const act_t &actor) { update(a, a + 1, actor); } void update(std::size_t a, std::size_t b, const act_t &actor) { update(a, b, actor, 1, 0, N); } void update(std::size_t a, std::size_t b, const act_t &actor, std::size_t k, std::size_t l, std::size_t r) { eval(k, l, r); if (b <= l || r <= a) return; if (a <= l && r <= b) { lazy_opr(lazy[k], actor, r - l); lazyflag[k] = true; eval(k, l, r); } else { update(a, b, actor, left(k), l, (l + r) / 2); update(a, b, actor, right(k), (l + r) / 2, r); data[k] = opr(data[left(k)], data[right(k)]); } } Monoid query(std::size_t a) { return query(a, a + 1); } Monoid query(std::size_t a, std::size_t b) { return query(a, b, 1, 0, N); } Monoid query(std::size_t a, std::size_t b, std::size_t k, std::size_t l, std::size_t r) { if (b <= l || r <= a) return identity; eval(k, l, r); if (a <= l && r <= b) return data[k]; return opr(query(a, b, left(k), l, (l + r) / 2), query(a, b, right(k), (l + r) / 2, r)); } std::size_t right_bound(std::size_t idx, const std::function &f) { assert(idx < n); std::size_t ret = idx; Monoid now = identity; right_bound(idx, f, 1, 0, N, now, ret); return std::min(ret, n); } void right_bound(std::size_t idx, const std::function &f, std::size_t k, std::size_t l, std::size_t r, Monoid &now, std::size_t &pos) { if (idx >= r || l > pos) return; eval(k, l, r); const std::size_t mid = (l + r) / 2; if (l >= idx) { Monoid nxt = opr(now, data[k]); if (f(nxt)) { pos = r; now = nxt; return; } } if (r - l > 1) { right_bound(idx, f, left(k), l, mid, now, pos); right_bound(idx, f, right(k), mid, r, now, pos); } } std::size_t left_bound(std::size_t idx, const std::function &f) { assert(idx <= n); std::size_t ret = idx; Monoid now = identity; left_bound(idx, f, 1, 0, N, now, ret); return ret; } void left_bound(std::size_t idx, const std::function &f, std::size_t k, std::size_t l, std::size_t r, Monoid &now, std::size_t &pos) { if (idx <= l || r < pos) return; eval(k, l, r); const std::size_t mid = (l + r) / 2; if (r <= idx) { Monoid nxt = opr(data[k], now); if (f(nxt)) { pos = l; now = nxt; return; } } if (r - l > 1) { left_bound(idx, f, right(k), mid, r, now, pos); left_bound(idx, f, left(k), l, mid, now, pos); } } }; template // K must be a field. struct matrix { std::vector> mat; matrix() {} matrix(std::size_t n) { assign(n, n); } matrix(std::size_t h, std::size_t w) { assign(h, w); } matrix(const matrix &x) : mat(x.mat) {} void resize(std::size_t h, std::size_t w, const K v = K()) { mat.resize(h, std::vector(w, v)); } void assign(std::size_t h, std::size_t w, const K v = K()) { mat.assign(h, std::vector(w, v)); } std::size_t height() const { return mat.size(); } std::size_t width() const { return mat.empty() ? 0 : mat[0].size(); } bool is_square() const { return height() == width(); } std::vector &operator[](const std::size_t i) { return mat[i]; } static matrix identity(std::size_t n) { matrix ret(n, n); for (std::size_t i = 0; i < n; ++i) ret[i][i] = K(1); return ret; } matrix operator-() const { std::size_t h = height(), w = width(); matrix res(*this); for (std::size_t i = 0; i < h; ++i) { for (std::size_t j = 0; j < w; ++j) { res[i][j] = -mat[i][j]; } } return res; } matrix operator&(const matrix &x) const { return matrix(*this) &= x; } matrix operator|(const matrix &x) const { return matrix(*this) |= x; } matrix operator^(const matrix &x) const { return matrix(*this) ^= x; } matrix operator+(const matrix &x) const { return matrix(*this) += x; } matrix operator-(const matrix &x) const { return matrix(*this) -= x; } matrix operator*(const matrix &x) const { return matrix(*this) *= x; } matrix &operator&=(const matrix &x) { std::size_t h = height(), w = width(); assert(h == x.height() and w == x.width()); for (std::size_t i = 0; i < h; ++i) { for (std::size_t j = 0; j < w; ++j) { mat[i][j] &= x.mat[i][j]; } } return *this; } matrix &operator|=(const matrix &x) { std::size_t h = height(), w = width(); assert(h == x.height() and w == x.width()); for (std::size_t i = 0; i < h; ++i) { for (std::size_t j = 0; j < w; ++j) { mat[i][j] |= x.mat[i][j]; } } return *this; } matrix &operator^=(const matrix &x) { std::size_t h = height(), w = width(); assert(h == x.height() and w == x.width()); for (std::size_t i = 0; i < h; ++i) { for (std::size_t j = 0; j < w; ++j) { mat[i][j] ^= x.mat[i][j]; } } return *this; } matrix &operator+=(const matrix &x) { std::size_t h = height(), w = width(); assert(h == x.height() and w == x.width()); for (std::size_t i = 0; i < h; ++i) { for (std::size_t j = 0; j < w; ++j) { mat[i][j] += x.mat[i][j]; } } return *this; } matrix &operator-=(const matrix &x) { std::size_t h = height(), w = width(); assert(h == x.height() and w == x.width()); for (std::size_t i = 0; i < h; ++i) { for (std::size_t j = 0; j < w; ++j) { mat[i][j] -= x.mat[i][j]; } } return *this; } matrix &operator*=(const matrix &x) { std::size_t l = height(), m = width(), n = x.width(); assert(m == x.height()); matrix res(l, n); for (std::size_t i = 0; i < l; ++i) { for (std::size_t j = 0; j < m; ++j) { for (std::size_t k = 0; k < n; ++k) { res[i][k] += mat[i][j] * x.mat[j][k]; } } } return *this = res; } friend matrix pow(matrix x, int_fast64_t n) { assert(x.is_square()); matrix res = identity(x.height()); while (n) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } friend matrix inverse(const matrix &x) { assert(x.is_square()); std::size_t n = x.height(); matrix ext_x(x), idn(identity(n)), ret; for (std::size_t i = 0; i < n; ++i) ext_x[i].insert(end(ext_x[i]), begin(idn[i]), end(idn[i])); std::vector piv = ext_x.row_canonicalize(); if (piv.size() < n) return matrix(); ret.mat.resize(n); for (std::size_t i = 0; i < n; ++i) { ret[i] = std::vector(begin(ext_x[i]) + n, end(ext_x[i])); } return ret; } std::vector row_canonicalize() { std::vector pivots; std::size_t h = height(), w = width(), rank = 0; for (std::size_t j = 0; j < w; ++j) { bool piv = false; for (std::size_t i = rank; i < h; ++i) { if (mat[i][j]) { if (piv) { K r = -mat[i][j]; for (std::size_t k = j; k < w; ++k) { mat[i][k] += mat[rank][k] * r; } } else { swap(mat[rank], mat[i]); K r = mat[rank][j]; for (std::size_t k = j; k < w; ++k) { mat[rank][k] /= r; } for (std::size_t k = 0; k < rank; ++k) { r = -mat[k][j]; for (std::size_t l = j; l < w; ++l) { mat[k][l] += mat[rank][l] * r; } } piv = true; } } } if (piv) { pivots.emplace_back(j); ++rank; } } return pivots; } K det() const { matrix x(*this); assert(is_square()); std::size_t n = height(); K res(1); for (std::size_t j = 0; j < n; ++j) { bool piv = false; for (std::size_t i = j; i < n; ++i) { if (x[i][j]) { if (piv) { const K r = -x[i][j]; for (std::size_t k = j; k < n; ++k) { x[i][k] += x[j][k] * r; } } else { swap(x[i], x[j]); if (i != j) res = -res; const K r = x[j][j]; res *= r; for (std::size_t k = j; k < n; ++k) { x[j][k] /= r; } piv = true; } } } if (not piv) { return K(0); } } return res; } friend std::istream &operator>>(std::istream &s, matrix &x) { std::size_t h = x.height(), w = x.width(); for (std::size_t i = 0; i < h; ++i) { for (std::size_t j = 0; j < w; ++j) { s >> x[i][j]; } } return s; } friend std::ostream &operator<<(std::ostream &s, const matrix &x) { std::size_t h = x.height(), w = x.width(); for (std::size_t i = 0; i < h; ++i) { if (i) s << "\n"; for (std::size_t j = 0; j < w; ++j) { s << (j ? " " : "") << x.mat[i][j]; } } return s; } }; int n; int qry; using mat_t = matrix; LazySegtree seg(1u<<17,mat_t(3,1),mat_t::identity(3),plus(),[](mat_t &x, const mat_t y,int w){x=y*x;},[](mat_t &x,const mat_t y,int w){x=y*x;}); void init() {} void input() { cin >> n >> qry; vector ini(n); for(int i=0; i> a; mat_t pb(3,1); pb[0][0]=a; pb[(a&1)+1][0]=1; ini[i]=pb; } seg.copy(ini); } void solve() { while(qry--) { int typ,l,r; std::cin >> typ >> l >> r; l--; if(typ==1) { mat_t up(mat_t::identity(3)); up[0]={0,0,1}; dump(up); seg.update(l,r,up); } else if(typ==2) { mat_t up(mat_t::identity(3)); int x; std::cin >> x; up[0]={1,x,x}; if(x&1) { swap(up[1],up[2]); } dump(up); seg.update(l,r,up); } else { auto res=seg.query(l,r); dump(res); std::cout << res[0][0] << "\n"; } } }