import java.io.*; import java.util.*; @SuppressWarnings("unused") public class Main { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(System.out); final int MOD = (int)1e9+7; long dup(long a, long b){return (a + b - 1) / b;} void printlnYN(boolean b){out.println((b ? "Yes" : "No"));} void solve() throws Exception{ int N = in.nextInt(), Q = in.nextInt(); long[] a = new long[N]; for(int i = 0; i < N; i++) a[i] = in.nextLong()-1; int[] index = new int[N]; for(int i = 0; i < N; i++){ index[(int)a[i]] = i; } SegmentTree tree = new SegmentTree(a); for (int i = 0; i < Q; i++) { int q = in.nextInt(); int L = in.nextInt()-1, R = in.nextInt()-1; if(q == 1){ int tmp1 = index[(int)tree.getPoint(L)]; index[(int)tree.getPoint(L)] = index[(int)tree.getPoint(R)]; index[(int)tree.getPoint(R)] = tmp1; long tmp2 = tree.getPoint(L); tree.setPoint(L, tree.getPoint(R)); tree.setPoint(R, tmp2); }else{ out.println(index[(int)tree.getSegment(L, R+1)]+1); } } } class SegmentTree{ int n; long[] node; /*二項演算で使える単位元*/ private long e = Integer.MAX_VALUE; //private long e = 0; /*結合律が成り立つ、要素同士の二項演算*/ private long f(long e1, long e2){ return Math.min(e1, e2); //区間最小値 //return e1 + e2; //区間和 } /*要素更新用の演算(可換でなくてもよい)*/ private long g(long nodeVal, long val){ return val; //更新 //return nodeVal + val; //加算 } /* 単位元で初期化 */ public SegmentTree(int sz){ n = 1; while(n < sz) n *= 2; node = new long[2*n]; Arrays.fill(node, e); } /* 元配列vでセグメント木を初期化 */ public SegmentTree(long[] v){ this(v.length); for(int i = 0; i < v.length; i++) node[i+n] = v[i]; for(int i = n-1; i > 0; i--) node[i] = f(node[2*i+0], node[2*i+1]); } public long getPoint(int x){ return node[x + n]; } /* 0-indexed:xの要素をg(node[x], val)に更新 */ public void setPoint(int x, long val){ x += n; node[x] = g(node[x], val); while(x > 1){ x = x / 2; node[x] = f(node[2*x+0], node[2*x+1]); } } /* 指定した区間[L,R)の区間演算の結果を求めるクエリ */ public long getSegment(int L, int R){ L += n; R += n; long resL = e, resR = e; while (L < R) { if ((L & 1) != 0){ resL = f(resL, node[L]); L++; } if ((R & 1) != 0){ --R; resR = f(resR, node[R]); } L >>= 1; R >>= 1; } return f(resL, resR); } } public static void main(String[] args) throws Exception { new Main().m(); } void m() throws Exception { solve(); out.flush(); } static class FastScanner { Reader input; FastScanner() {this(System.in);} FastScanner(InputStream stream) {this.input = new BufferedReader(new InputStreamReader(stream));} int nextInt() {return (int) nextLong();} long nextLong() { try { int sign = 1; int b = input.read(); while ((b < '0' || '9' < b) && b != '-' && b != '+') { b = input.read(); } if (b == '-') { sign = -1; b = input.read(); } else if (b == '+') { b = input.read(); } long ret = b - '0'; while (true) { b = input.read(); if (b < '0' || '9' < b) return ret * sign; ret *= 10; ret += b - '0'; } } catch (IOException e) { e.printStackTrace(); return -1; } } double nextDouble() { try { double sign = 1; int b = input.read(); while ((b < '0' || '9' < b) && b != '-' && b != '+') { b = input.read(); } if (b == '-') { sign = -1; b = input.read(); } else if (b == '+') { b = input.read(); } double ret = b - '0'; while (true) { b = input.read(); if (b < '0' || '9' < b) break; ret *= 10; ret += b - '0'; } if (b != '.') return sign * ret; double div = 1; b = input.read(); while ('0' <= b && b <= '9') { ret *= 10; ret += b - '0'; div *= 10; b = input.read(); } return sign * ret / div; } catch (IOException e) { e.printStackTrace(); return Double.NaN; } } char nextChar() { try { int b = input.read(); while (Character.isWhitespace(b)) { b = input.read(); } return (char) b; } catch (IOException e) { e.printStackTrace(); return 0; } } String nextStr() { try { StringBuilder sb = new StringBuilder(); int b = input.read(); while (Character.isWhitespace(b)) { b = input.read(); } while (b != -1 && !Character.isWhitespace(b)) { sb.append((char) b); b = input.read(); } return sb.toString(); } catch (IOException e) { e.printStackTrace(); return ""; } } public int[] nextIntArray(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = nextInt(); } return res; } public int[] nextIntArrayDec(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = nextInt() - 1; } return res; } public int[] nextIntArray1Index(int n) { int[] res = new int[n + 1]; for (int i = 0; i < n; i++) { res[i + 1] = nextInt(); } return res; } public long[] nextLongArray(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = nextLong(); } return res; } public long[] nextLongArrayDec(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = nextLong() - 1; } return res; } public long[] nextLongArray1Index(int n) { long[] res = new long[n + 1]; for (int i = 0; i < n; i++) { res[i + 1] = nextLong(); } return res; } public double[] nextDoubleArray(int n) { double[] res = new double[n]; for (int i = 0; i < n; i++) { res[i] = nextDouble(); } return res; } public Long[] nextWrapperLongArray(int n) { Long[] res = new Long[n]; for (int i = 0; i < n; i++) { res[i] = nextLong(); } return res; } public Long[] nextWrapperLongArrayDec(int n) { Long[] res = new Long[n]; for (int i = 0; i < n; i++) { res[i] = nextLong() - 1; } return res; } public Long[] nextWrapperLongArray1Index(int n) { Long[] res = new Long[n + 1]; for (int i = 0; i < n; i++) { res[i + 1] = nextLong(); } return res; } } }