import java.io.*; import java.util.*; @SuppressWarnings("unused") public class Main { FastScanner in = new FastScanner(System.in); PrintWriter out = new PrintWriter(System.out); final int MOD = (int)1e9+7; long dup(long a, long b){return (a + b - 1) / b;} void printlnYN(boolean b){out.println((b ? "Yes" : "No"));} void solve() throws Exception{ int N = in.nextInt(), Q = in.nextInt(); long[] a = in.nextLongArray(N); DualSegmentTree dst = new DualSegmentTree(a); long[] init = new long[N-1]; for(int i = 0; i < N-1; i++) if(a[i] != a[i+1]) init[i] = 1; SegmentTree st = new SegmentTree(init); for (int i = 0; i < Q; i++) { int q = in.nextInt(); int L = in.nextInt()-1, R = in.nextInt()-1; if(q == 1){ long x = in.nextLong(); dst.setSegment(L, R+1, x); if(L > 0){ if(dst.getPoint(L-1) != dst.getPoint(L)) st.setPoint(L-1, 1); else st.setPoint(L-1, 0); } if(R+1 < N){ if(dst.getPoint(R) != dst.getPoint(R+1)) st.setPoint(R, 1); else st.setPoint(R, 0); } }else{ out.println(st.getSegment(L, R)+1); } } } class SegmentTree{ int n; long[] node; /*二項演算で使える単位元*/ private long e = 0; /*結合律が成り立つ、要素同士の二項演算*/ private long f(long e1, long e2){ return e1 + e2; } /*要素更新用の演算(可換でなくてもよい)*/ private long g(long nodeVal, long val){ return val; } /* 単位元で初期化 */ public SegmentTree(int sz){ n = 1; while(n < sz) n *= 2; node = new long[2*n]; Arrays.fill(node, e); } /* 元配列vでセグメント木を初期化 */ public SegmentTree(long[] v){ this(v.length); for(int i = 0; i < v.length; i++) node[i+n] = v[i]; for(int i = n-1; i > 0; i--) node[i] = f(node[2*i+0], node[2*i+1]); } public long getPoint(int x){ return node[x + n]; } /* 0-indexed:xの要素をg(node[x], val)に更新 */ public void setPoint(int x, long val){ x += n; node[x] = g(node[x], val); while(x > 1){ x = x / 2; node[x] = f(node[2*x+0], node[2*x+1]); } } /* 指定した区間[L,R)の区間演算の結果を求めるクエリ */ public long getSegment(int L, int R){ L += n; R += n; long resL = e, resR = e; while (L < R) { if ((L & 1) != 0){ resL = f(resL, node[L]); L++; } if ((R & 1) != 0){ --R; resR = f(resR, node[R]); } L >>= 1; R >>= 1; } return f(resL, resR); } } class DualSegmentTree{ int sz; int n; long[] node; /*作用素で使える単位元*/ private long e = 0; /*結合律が成り立ち、更新が可換であるような、各要素への作用素*/ private long f(long nodeVal, long val){ return nodeVal + val; } /* 単位元で初期化 */ public DualSegmentTree(int sz){ this.sz = sz; n = 1; while(n < sz) n *= 2; node = new long[2*n]; Arrays.fill(node, e); } /* 元配列vでセグメント木を初期化 */ public DualSegmentTree(long[] v){ this(v.length); for(int i = 0; i < v.length; i++){ node[i+n] = v[i]; } } /* 0-indexed:xの要素を取得する */ public long getPoint(int x){ x += n; long res = node[x]; while(x > 1){ x = x / 2; res = f(res, node[x]); } return res; } /* 指定した区間[L,R)に含まれるすべての要素に作用素を適用するクエリ */ public void setSegment(int L, int R, long val){ L += n; R += n; while (L < R) { if ((L & 1) != 0){ node[L] = f(node[L], val); L++; } if ((R & 1) != 0){ --R; node[R] = f(node[R], val); } L >>= 1; R >>= 1; } } } public static void main(String[] args) throws Exception { new Main().m(); } void m() throws Exception { solve(); out.flush(); } static class FastScanner { Reader input; FastScanner() {this(System.in);} FastScanner(InputStream stream) {this.input = new BufferedReader(new InputStreamReader(stream));} int nextInt() {return (int) nextLong();} long nextLong() { try { int sign = 1; int b = input.read(); while ((b < '0' || '9' < b) && b != '-' && b != '+') { b = input.read(); } if (b == '-') { sign = -1; b = input.read(); } else if (b == '+') { b = input.read(); } long ret = b - '0'; while (true) { b = input.read(); if (b < '0' || '9' < b) return ret * sign; ret *= 10; ret += b - '0'; } } catch (IOException e) { e.printStackTrace(); return -1; } } double nextDouble() { try { double sign = 1; int b = input.read(); while ((b < '0' || '9' < b) && b != '-' && b != '+') { b = input.read(); } if (b == '-') { sign = -1; b = input.read(); } else if (b == '+') { b = input.read(); } double ret = b - '0'; while (true) { b = input.read(); if (b < '0' || '9' < b) break; ret *= 10; ret += b - '0'; } if (b != '.') return sign * ret; double div = 1; b = input.read(); while ('0' <= b && b <= '9') { ret *= 10; ret += b - '0'; div *= 10; b = input.read(); } return sign * ret / div; } catch (IOException e) { e.printStackTrace(); return Double.NaN; } } char nextChar() { try { int b = input.read(); while (Character.isWhitespace(b)) { b = input.read(); } return (char) b; } catch (IOException e) { e.printStackTrace(); return 0; } } String nextStr() { try { StringBuilder sb = new StringBuilder(); int b = input.read(); while (Character.isWhitespace(b)) { b = input.read(); } while (b != -1 && !Character.isWhitespace(b)) { sb.append((char) b); b = input.read(); } return sb.toString(); } catch (IOException e) { e.printStackTrace(); return ""; } } public int[] nextIntArray(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = nextInt(); } return res; } public int[] nextIntArrayDec(int n) { int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = nextInt() - 1; } return res; } public int[] nextIntArray1Index(int n) { int[] res = new int[n + 1]; for (int i = 0; i < n; i++) { res[i + 1] = nextInt(); } return res; } public long[] nextLongArray(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = nextLong(); } return res; } public long[] nextLongArrayDec(int n) { long[] res = new long[n]; for (int i = 0; i < n; i++) { res[i] = nextLong() - 1; } return res; } public long[] nextLongArray1Index(int n) { long[] res = new long[n + 1]; for (int i = 0; i < n; i++) { res[i + 1] = nextLong(); } return res; } public double[] nextDoubleArray(int n) { double[] res = new double[n]; for (int i = 0; i < n; i++) { res[i] = nextDouble(); } return res; } public Long[] nextWrapperLongArray(int n) { Long[] res = new Long[n]; for (int i = 0; i < n; i++) { res[i] = nextLong(); } return res; } public Long[] nextWrapperLongArrayDec(int n) { Long[] res = new Long[n]; for (int i = 0; i < n; i++) { res[i] = nextLong() - 1; } return res; } public Long[] nextWrapperLongArray1Index(int n) { Long[] res = new Long[n + 1]; for (int i = 0; i < n; i++) { res[i + 1] = nextLong(); } return res; } } }