#ifdef stderr_path #define LOCAL #define _GLIBCXX_DEBUG #endif #pragma GCC optimize("Ofast") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define debug_stream std::cerr #define iostream_untie true #define __precision__ 10 #define rep(i, n) for(int i = 0; i < int(n); ++i) #define all(v) begin(v), end(v) #define rall(v) rbegin(v), rend(v) #define __odd(n) ((n) & 1) #define __even(n) (__odd(n) ^ 1) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(int32_t(n)) #define __clz64(n) __builtin_clzll(int64_t(n)) #define __ctz32(n) __builtin_ctz(int32_t(n)) #define __ctz64(n) __builtin_ctzll(int64_t(n)) using i64 = int_fast64_t; using pii = std::pair; using pll = std::pair; template using heap = std::priority_queue; template using minheap = std::priority_queue, std::greater>; template constexpr T inf = std::numeric_limits::max() / T(2) - T(1123456); namespace execution { std::chrono::system_clock::time_point start_time, end_time; void print_elapsed_time() { end_time = std::chrono::system_clock::now(); std::cerr << "\n----- Exec time : "; std::cerr << std::chrono::duration_cast( end_time - start_time) .count(); std::cerr << " ms -----\n\n"; } struct setupper { setupper() { if(iostream_untie) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } std::cout << std::fixed << std::setprecision(__precision__); #ifdef stderr_path if(freopen(stderr_path, "a", stderr)) { std::cerr << std::fixed << std::setprecision(__precision__); } else fclose(stderr); #endif #ifdef stdout_path if(not freopen(stdout_path, "w", stdout)) { freopen("CON", "w", stdout); std::cerr << "Failed to open the stdout file\n\n"; } std::cout << ""; #endif #ifdef stdin_path if(not freopen(stdin_path, "r", stdin)) { freopen("CON", "r", stdin); std::cerr << "Failed to open the stdin file\n\n"; } #endif #ifdef LOCAL atexit(print_elapsed_time); start_time = std::chrono::system_clock::now(); #endif } } __setupper; } // namespace execution struct myclock_t { std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built; myclock_t() : is_built(false) {} void build(int crt_ln, const std::string &crt_func) { is_built = true; last_pt = built_pt = std::chrono::system_clock::now(); last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) { last_pt = std::chrono::system_clock::now(); last_ln = crt_ln, last_func = crt_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n"; } } void get(int crt_ln, const std::string &crt_func) { if(is_built) { std::chrono::system_clock::time_point crt_pt( std::chrono::system_clock::now()); int64_t diff = std::chrono::duration_cast(crt_pt - last_pt) .count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n"; } } }; #ifdef LOCAL myclock_t myclock; #define build_clock() myclock.build(__LINE__, __func__) #define set_clock() myclock.set(__LINE__, __func__) #define get_clock() myclock.get(__LINE__, __func__) #else #define build_clock() 42 #define set_clock() 42 #define get_clock() 42 #endif namespace std { template void rsort(RAitr __first, RAitr __last) { sort(__first, __last, greater<>()); } template size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template struct hash> { size_t operator()(pair const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template ::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine( tuple_hash_calc::apply(seed, t), get(t)); } }; template struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template struct hash> { size_t operator()(tuple const &t) const { return tuple_hash_calc>::apply(0, t); } }; template istream &operator>>(std::istream &s, pair &p) { return s >> p.first >> p.second; } template ostream &operator<<(std::ostream &s, const pair p) { return s << p.first << " " << p.second; } template istream &operator>>(istream &s, vector &v) { for(T &e : v) { s >> e; } return s; } template ostream &operator<<(ostream &s, const vector &v) { for(size_t i = 0; i < v.size(); ++i) { s << (i ? " " : "") << v[i]; } return s; } template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { tupleos::apply(s, t); return s << " " << get(t); } }; template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { return s << get<0>(t); } }; template ostream &operator<<(ostream &s, const tuple &t) { return tupleos, tuple_size>::value - 1>::apply( s, t); } template <> ostream &operator<<(ostream &s, const tuple<> &t) { return s; } } // namespace std #ifdef LOCAL #define dump(...) \ debug_stream << " [ " << __LINE__ << " : " << __FUNCTION__ << " ] " \ << #__VA_ARGS__ << " : ", \ dump_func(__VA_ARGS__) #else #define dump(...) 42 #endif template void dump_func(const T &x) { debug_stream << x << '\n'; } template void dump_func(const T &x, Rest... rest) { debug_stream << x << ", "; dump_func(rest...); } template void write(const T &x) { std::cout << x << '\n'; } template void write(const T &x, Rest... rest) { std::cout << x << ' '; write(rest...); } void writeln() {} template void writeln(const T &x, Rest... rest) { std::cout << x << '\n'; writeln(rest...); } #define esc(...) writeln(__VA_ARGS__), exit(0) template void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; } template bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; } template bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; } template constexpr T minf(const T &x, const T &y) { return std::min(x, y); } template constexpr T maxf(const T &x, const T &y) { return std::max(x, y); } template int_t bin(int_t ok, int_t ng, const F &f) { while(std::abs(ok - ng) > 1) { int_t mid = (ok + ng) / 2; (f(mid) ? ok : ng) = mid; } return ok; } template void init(A (&array)[N], const T &val) { std::fill((T *)array, (T *)(array + N), val); } template void init(A (&array)[N]) { memset(array, 0, sizeof(array)); } void for_subset(int_fast64_t s, const std::function &fn) { int_fast64_t t = s; do { fn(t); } while((--t &= s) != s); } namespace math { template constexpr int_t gcd(int_t x, int_t y) { x = x > 0 ? x : -x, y = y > 0 ? y : -y; while(y) y ^= x ^= y ^= x %= y; return x; } template constexpr int_t lcm(int_t x, int_t y) { return x ? x / gcd(x, y) * y : 0; } template constexpr std::tuple ext_gcd(int_t a, int_t b) { int_t sgn_a = a >= 0 ? 1 : (a = -a, 0), sgn_b = b >= 0 ? 1 : (b = -b, 0); int_t p = 1, q = 0, r = 0, s = 1; while(b) { int_t t = a / b; r ^= p ^= r ^= p -= t * r; s ^= q ^= s ^= q -= t * s; b ^= a ^= b ^= a %= b; } return std::tuple(a, sgn_a ? p : -p, sgn_b ? q : -q); } template constexpr std::pair mod_comp(int_t k, int_t m, int_t l, int_t n) { assert(m > 0 and n > 0); int_t g, x, y; std::tie(g, x, y) = ext_gcd(m, n); k += ((k %= m) < 0) * m, l += ((l %= n) < 0) * n; int_t s = k / g, t = l / g, r = k % g; if(r != l % g) return std::pair(-1, -1); int_t lcm = m / g * n; return std::pair( (m * x % lcm * t % lcm + n * y % lcm * s % lcm + r + lcm * 2) % lcm, lcm); } } // namespace math /* The main code follows. */ using namespace std; using namespace math; signed main() { void solve(); void input(); void init(); int t = 1; // std::cin >> t; while(t--) { init(); input(); solve(); } } template // Abel must be an abelian group. struct Dynamic_fenwick_tree { using ary_t = std::unordered_map; const std::size_t n; const Abel identity; ary_t data; Dynamic_fenwick_tree(std::size_t _n, Abel _identity = Abel()) : n(_n), identity(_identity) {} void inc(std::size_t i, Abel x) { for(++i; i <= n; i += i & -i) { data[i] += x; } } void subs(std::size_t i, Abel x) { inc(i, x - (*this)[i]); } // sum of range [0, i). Abel sum(std::size_t i) { Abel ret = identity; for(; i; i &= (i - 1)) { ret += data[i]; } return ret; } // sum of range [l, r). Abel sum(std::size_t l, std::size_t r) { return sum(r) - sum(l); } Abel operator[](std::size_t i) { return sum(i + 1) - sum(i); } // maximum i where range [0, i) meets the condition. std::size_t bound(const std::function &f) { Abel now = identity; std::size_t l = 0, r = n + 1; std::size_t bit = 1; while(bit <= n) bit <<= 1; while(r - l > 1) { while(bit >= r - l) bit >>= 1; if(f(now + data[l + bit])) { now += data[l + bit]; l += bit; } else { r = l + bit; } } return l; } }; template class Lazy_segment_tree { std::vector data; std::vector lazy; std::vector lazyflag; public: const std::size_t n, N; using opr_t = std::function; using lazy_opr_t = std::function; using update_opr_t = std::function; const opr_t opr; const lazy_opr_t lazy_opr; const update_opr_t update_opr; const Monoid identity, lazy_identity; Lazy_segment_tree(std::size_t _n, const Monoid &_identity, const Monoid &_lazy_identity, const opr_t &_opr, const lazy_opr_t &_lazy_opr, const update_opr_t &_update_opr) : n(_n), N(_n > 1 ? 1 << (32 - __builtin_clz(_n - 1)) : 1), opr(_opr), lazy_opr(_lazy_opr), update_opr(_update_opr), identity(_identity), lazy_identity(_lazy_identity) { data.assign(N << 1, identity); lazy.assign(N << 1, lazy_identity); lazyflag.assign(N << 1, false); } Monoid operator[](std::size_t i) { return query(i, i + 1); } template void copy(P s, P t) { for(std::size_t i = N; s != t; ++s, ++i) data[i] = *s; for(std::size_t i = N - 1; i; --i) data[i] = opr(data[left(i)], data[right(i)]); } template void copy(A &v) { copy(begin(v), end(v)); } void init(const Monoid &x) { for(std::size_t i = 0; i < N; ++i) data[i + N] = x; for(std::size_t i = N - 1; i; --i) data[i] = opr(data[left(i)], data[right(i)]); } void update(std::size_t a, const act_t &actor) { update(a, a + 1, actor); } void update(std::size_t a, std::size_t b, const act_t &actor) { update(a, b, actor, 1, 0, N); } Monoid query(std::size_t a, std::size_t b) { return query(a, b, 1, 0, N); } std::size_t right_bound(std::size_t idx, const std::function &f) { assert(idx < n); std::size_t ret = idx; Monoid now = identity; right_bound(idx, f, 1, 0, N, now, ret); return std::min(ret, n); } std::size_t left_bound(std::size_t idx, const std::function &f) { assert(idx <= n); std::size_t ret = idx; Monoid now = identity; left_bound(idx, f, 1, 0, N, now, ret); return ret; } private: constexpr std::size_t left(const std::size_t k) { return k * 2; } constexpr std::size_t right(const std::size_t k) { return left(k) ^ 1; } constexpr std::size_t parent(const std::size_t k) { return k >> 1; } constexpr std::size_t sibling(const std::size_t k) { return k ^ 1; } void eval(std::size_t k, std::size_t l, std::size_t r) { if(!lazyflag[k]) return; update_opr(data[k], lazy[k], r - l); if(r - l > 1) { lazy_opr(lazy[left(k)], lazy[k], (r - l) / 2); lazy_opr(lazy[right(k)], lazy[k], (r - l) / 2); lazyflag[left(k)] = lazyflag[right(k)] = true; } lazy[k] = lazy_identity; lazyflag[k] = false; } void update(std::size_t a, std::size_t b, const act_t &actor, std::size_t k, std::size_t l, std::size_t r) { eval(k, l, r); if(b <= l || r <= a) return; if(a <= l && r <= b) { lazy_opr(lazy[k], actor, r - l); lazyflag[k] = true; eval(k, l, r); } else { update(a, b, actor, left(k), l, (l + r) / 2); update(a, b, actor, right(k), (l + r) / 2, r); data[k] = opr(data[left(k)], data[right(k)]); } } Monoid query(std::size_t a, std::size_t b, std::size_t k, std::size_t l, std::size_t r) { if(b <= l || r <= a) return identity; eval(k, l, r); if(a <= l && r <= b) return data[k]; return opr(query(a, b, left(k), l, (l + r) / 2), query(a, b, right(k), (l + r) / 2, r)); } void right_bound(std::size_t idx, const std::function &f, std::size_t k, std::size_t l, std::size_t r, Monoid &now, std::size_t &pos) { if(idx >= r || l > pos) return; eval(k, l, r); const std::size_t mid = (l + r) / 2; if(l >= idx) { Monoid nxt = opr(now, data[k]); if(f(nxt)) { pos = r; now = nxt; return; } } if(r - l > 1) { right_bound(idx, f, left(k), l, mid, now, pos); right_bound(idx, f, right(k), mid, r, now, pos); } } void left_bound(std::size_t idx, const std::function &f, std::size_t k, std::size_t l, std::size_t r, Monoid &now, std::size_t &pos) { if(idx <= l || r < pos) return; eval(k, l, r); const std::size_t mid = (l + r) / 2; if(r <= idx) { Monoid nxt = opr(data[k], now); if(f(nxt)) { pos = l; now = nxt; return; } } if(r - l > 1) { left_bound(idx, f, right(k), mid, r, now, pos); left_bound(idx, f, left(k), l, mid, now, pos); } } }; int n,qry; int a[1<<17]; vector arr; vector> que; void init() {} void input() { std::cin >> n >> qry; read_range(a,a+n); } void solve() { Lazy_segment_tree lsg(n,0,0,plus(),[](i64 &x,i64 y,size_t w){x+=y;},[](i64 &x,i64 y,size_t w){x+=y*w;}); Dynamic_fenwick_tree fenw(n-1); for(int i=0; i> typ >> l >> r; l--; if(typ==1) { int x; std::cin >> x; if(l>0 and lsg[l-1]!=lsg[l]) { fenw.inc(l-1,-1); } if(lsg[r]!=lsg[r-1]) { fenw.inc(r-1,-1); } lsg.update(l,r,x); if(l>0 and lsg[l-1]!=lsg[l]) { fenw.inc(l-1,1); } if(lsg[r-1]!=lsg[r]) { fenw.inc(r-1,1); } } else { std::cout << fenw.sum(l,r-1)+1 << "\n"; } } }