#include #define loop(n) for (auto ngtkana_is_genius = 0; ngtkana_is_genius < int(n); ngtkana_is_genius++) #define rep(i, begin, end) for (auto i = int(begin); i < int(end); i++) #define all(v) v.begin(), v.end() #define lint long long auto cmn = [](auto& a, auto b){if (a > b) {a = b; return true;} return false;}; auto cmx = [](auto& a, auto b){if (a < b) {a = b; return true;} return false;}; void debug_impl() { std::cerr << std::endl; } template void debug_impl(Head head, Tail... tail){ std::cerr << " " << head; debug_impl(tail...); } #define debug(...)\ std::cerr << std::boolalpha << "[" << #__VA_ARGS__ << "]:";\ debug_impl(__VA_ARGS__);\ std::cerr << std::noboolalpha; template< typename Value1, typename Value2, typename BinaryOp1, typename BinaryOp2, typename BinaryOp3, typename UnaryOp1, typename UnaryOp2 > class lazy_segment_tree { struct node { int id, l, r; node (int id, int l, int r): id(id), l(l), r(r) {}; auto size () const {return r - l;} auto left_child () const { assert(size() > 1); return node(id * 2, l, (l + r) / 2); } auto right_child () const { assert(size() > 1); return node(id * 2 + 1, (l + r) / 2, r); } }; int sz, n, N; BinaryOp1 op1; BinaryOp2 op2; BinaryOp3 op3; Value1 id1; Value2 id2; UnaryOp1 expand; UnaryOp2 shrink; std::vector table; std::vector lazy; node initial_node; auto& op1_eq (Value1& x, Value1 y) {return x = op1(x, y);} auto& op2_eq (Value1& x, Value2 y) {return x = op2(x, y);} auto& op3_eq (Value2& x, Value2 y) {return x = op3(x, y);} void merge (int u) { table.at(u) = op1(table.at(2 * u), table.at(2 * u + 1)); } auto prop (int u) { op2_eq(table.at(u), lazy.at(u)); if (u < n) { op3_eq(lazy.at(2 * u), shrink(lazy.at(u))); op3_eq(lazy.at(2 * u + 1), shrink(lazy.at(u))); } lazy.at(u) = id2; return table.at(u); } auto chain (int u) const { auto ret = std::vector{}; for (auto i = u; i > 0; i /= 2) { ret.emplace_back(i); } std::reverse(ret.begin(), ret.end()); return ret; } auto query_base (int l, int r, Value2 val, const node& now) { prop(now.id); if (now.r <= l || r <= now.l) return id1; else if (l <= now.l && now.r <= r) { op3_eq(lazy.at(now.id), val); return prop(now.id); } else { auto ret =op1( query_base(l, r, shrink(val), now.left_child()), query_base(l, r, shrink(val), now.right_child()) ); merge(now.id); return ret; } } public: lazy_segment_tree( int sz, BinaryOp1 op1, BinaryOp2 op2, BinaryOp3 op3, Value1 id1, Value2 id2, UnaryOp1 expand, UnaryOp2 shrink ): sz (sz), n (std::pow(2, int(std::log2(sz)) + 1)), N (n * 2), op1 (std::move(op1)), op2 (std::move(op2)), op3 (std::move(op3)), id1 (id1), id2 (id2), expand(std::move(expand)), shrink(std::move(shrink)), table (N, id1), lazy (N, id2), initial_node(1, 0, n) { std::mt19937 mt(std::random_device{}()); std::uniform_int_distribution dist(1, 1'000'000); for (auto i = 0; i < 20; i++) { Value1 ex1 = {dist(mt), dist(mt), dist(mt)}, ex1_ = {dist(mt), dist(mt), dist(mt)}; Value2 ex2 = {dist(mt), dist(mt)}; assert(op1(ex1, id1) == ex1); assert(op2(ex1, id2) == ex1); assert(op3(ex2, id2) == ex2); assert(shrink(expand(ex2)) == ex2); assert(op2(op1(ex1, ex1_), expand(ex2)) == op1(op2(ex1, ex2), op2(ex1_, ex2))); } } void set (int i, const Value1 x) { assert(0 <= i && i < sz); table.at(n + i) = x; } void set (const std::vector& v) { assert((int)v.size() == sz); std::move(v.begin(), v.end(), table.begin() + n); } void build () { for (auto i = 1; i < n; i++) { prop(i); } for (auto i = n - 1; i >= 1; i--) { merge(i); } } void act (int l, int r, Value2 val) { for (auto i = 1; i < n; i *= 2) { val = expand(val); } query_base(l, r, val, initial_node); } auto query (int l, int r) { return query_base(l, r, id2, initial_node); } auto quiet_at (int i) const { i += n; auto actor = id2; for (auto j : chain(i)) { actor = shrink(actor); actor = op3(actor, lazy.at(j)); } return op2(table.at(i), actor); } auto quiet_collect () const { auto ret = std::vector(sz); for (auto i = 0; i < sz; i++) { ret.at(i) = quiet_at(i); } return ret; } auto& at (int i) { i += n; for (auto j : chain(i)) { prop(j); } return table.at(i); } auto collect () { build(); auto ret = std::vector(sz); for (auto i = 0; i < sz; i++) { ret.at(i) = table.at(i + n); } return ret; } }; template< typename Value1, typename Value2, typename BinaryOp1, typename BinaryOp2, typename BinaryOp3, typename UnaryOp1, typename UnaryOp2 > auto make_lazy_segment_tree( int size, BinaryOp1 op1, BinaryOp2 op2, BinaryOp3 op3, Value1 id1, Value2 id2, UnaryOp1 expand, UnaryOp2 shrink ) { return lazy_segment_tree< Value1, Value2, BinaryOp1, BinaryOp2, BinaryOp3, UnaryOp1, UnaryOp2 >( size, std::move(op1), std::move(op2), std::move(op3), id1, id2, std::move(expand), std::move(shrink) ); } template< typename Value1, typename Value2, typename BinaryOp1, typename BinaryOp2, typename BinaryOp3 > auto make_lazy_segment_tree( int size, BinaryOp1 op1, BinaryOp2 op2, BinaryOp3 op3, Value1 id1, Value2 id2 ) { auto f = [](auto x){ return x; }; return make_lazy_segment_tree( size, std::move(op1), std::move(op2), std::move(op3), id1, id2, std::move(f), std::move(f) ); } template std::istream& operator>> (std::istream& is, std::vector& v) { for (auto & x : v) is >> x; return is; } template std::ostream& operator<< (std::ostream& os, const std::vector& v) { auto n = v.size(); os << "{"; for (size_t i = 0; i < n; i++) {os << (i > 0 ? "," : "") << v.at(i);} return os << "}"; } template std::ostream& operator<< (std::ostream& os, const std::pair& pair){ return os << "(" << pair.first << "," << pair.second << ")"; } template std::istream& operator>> (std::iostream& is, std::pair& pair) { return is >> pair.first >> pair.second; } struct node { long long sum; int even, odd;}; std::ostream& operator<< (std::ostream& os, node const& x) { return os << "{" << x.sum << "," << x.even << "," << x.odd << "}"; } bool operator== (node const& x, node const& y) { return x.sum == y.sum && x.even == y.even && x.odd == y.odd; } int main() { std::cin.tie(0); std::cin.sync_with_stdio(false); int n, q; std::cin >> n >> q; auto act = [&] (auto& x, auto y) { x.sum += (x.even + x.odd) * y; if (y % 2 == 1) std::swap(x.even, x.odd); }; auto segtree = make_lazy_segment_tree>( n, [](auto x, auto y) { return node{x.sum + y.sum, x.even + y.even, x.odd + y.odd}; }, [&act](auto x, auto p) { act(x, p.second); if (p.first == -1) return x; x.sum = x.odd; act(x, p.first); return x; }, [](auto p, auto q) { lint a, b, c, d; std::tie(a, b) = p, std::tie(c, d) = q; if (a == -1 && c == -1) return std::make_pair(-1LL, b + d); if (a == -1 && c != -1) return std::make_pair(b + c, d); if (a != -1 && c == -1) return std::make_pair(a, b + d); if (a != -1 && c != -1) return std::make_pair(a, b + c + d); assert(false); return std::pair{}; }, node{0LL, 0, 0}, std::make_pair(-1LL, 0LL) ); rep(i, 0, n) { int a; std::cin >> a; int odd = a % 2; segtree.set(i, node{a, 1 - odd, odd}); } segtree.build(); // debug(segtree.quiet_collect()); loop(q) { int c; std::cin >> c; // debug("query", c); if (c == 1) { int l, r; std::cin >> l >> r; l--; // debug(l, r); segtree.act(l, r, std::make_pair(0LL, 0LL)); } else if (c == 2) { int l, r; lint x; std::cin >> l >> r >> x; l--; // debug(l, r, x); segtree.act(l, r, std::make_pair(-1LL, x)); } else { int l, r; std::cin >> l >> r; l--; // debug(l, r); auto ret = segtree.query(l, r); std::cout << ret.sum << std::endl; } // debug(segtree.quiet_collect()); } return 0; }