;; -*- coding: utf-8 -*- (eval-when (:compile-toplevel :load-toplevel :execute) (sb-int:defconstant-eqx OPT #+swank '(optimize (speed 3) (safety 2)) #-swank '(optimize (speed 3) (safety 0) (debug 0)) #'equal) #+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t) #-swank (set-dispatch-macro-character #\# #\> (lambda (s c p) (declare (ignore c p)) (read s nil nil t)))) #+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax) #-swank (disable-debugger) ; for CS Academy ;; BEGIN_INSERTED_CONTENTS ;;; ;;; Bignum arithmetic by Chinese remainder theorem ;;; ;; Extended Euclidean algorithm (Blankinship algorithm) (declaim (ftype (function * (values integer integer &optional)) %ext-gcd/bignum)) (defun %ext-gcd/bignum (a b) (declare (optimize (speed 3) (safety 0)) (unsigned-byte a b)) (let ((y 1) (x 0) (u 1) (v 0)) (declare (integer y x u v)) (loop (when (zerop a) (return (values x y))) (let ((q (floor b a))) (decf x (* q u)) (rotatef x u) (decf y (* q v)) (rotatef y v) (decf b (* q a)) (rotatef b a))))) ;; Reference: https://qiita.com/drken/items/ae02240cd1f8edfc86fd (Japanese) (declaim (inline chinese-rem)) (defun chinese-rem (b1 mod1 b2 mod2) "Solves x ≡ b1 mod m1, x ≡ b2 mod m2. The returned integer is in [0, LCM(m1, m2)). Returns LCM(m1, m2) as the second value. This function returns (VALUES NIL NIL) when the system is infeasible." (declare (integer b1 b2) ((integer 1) mod1 mod2)) (multiple-value-bind (p q) (%ext-gcd/bignum mod1 mod2) (let ((gcd (+ (* p mod1) (* q mod2)))) (declare (unsigned-byte gcd)) (unless (zerop (mod (- b2 b1) gcd)) ;; b1 ≡ b2 mod gcd(m1, m2) must holds (return-from chinese-rem (values nil nil))) (let* ((lcm/mod1 (floor mod2 gcd)) (tmp (mod (* (floor (- b2 b1) gcd) p) lcm/mod1)) (lcm (* mod1 lcm/mod1))) (values (mod (+ b1 (* mod1 tmp)) lcm) lcm))))) (defun chinese-rem* (rems moduli) "Solves x_i ≡ b_i mod m_i, i in {1, 2, ..., k}. The returned integers are in [0, LCM(m_1, m_2, ..., m_k)). Returns LCM(m_1, m_2, ..., m_k} as the second value. This function returns (VALUES NIL NIL) when the system is infeasible. REMS := vector of integers MODULI := vector of positive integers" (declare (vector rems moduli)) (let ((result 0) (modulus 1)) (declare (unsigned-byte result modulus)) (dotimes (i (length rems)) ;; Iteratively solves the system of two equations: x1 ≡ b1 mod m1 and x2 ;; ≡ b2 mod m2, where RESULT = b1, MODULUS = m1, (AREF REMS I) = b2, and ;; (AREF MODULI I) = m2. (let ((b2 (aref rems i)) (m2 (aref moduli i))) (declare (integer b2) ((integer 1) m2)) (multiple-value-bind (p q) (%ext-gcd/bignum modulus m2) (let ((gcd (+ (* p modulus) (* q m2)))) (declare (unsigned-byte gcd)) (unless (zerop (mod (- b2 result) gcd)) ;; b1 ≡ b2 mod gcd(m1, m2) must holds (return-from chinese-rem* (values nil nil))) (let* ((lcm/m1 (floor m2 gcd)) (tmp (mod (* (floor (- b2 result) gcd) p) lcm/m1))) (declare (unsigned-byte lcm/m1 tmp)) (setq result (+ result (* modulus tmp))) (setq modulus (* modulus lcm/m1))))))) (values result modulus))) (defmacro dbg (&rest forms) #+swank (if (= (length forms) 1) `(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms)) `(format *error-output* "~A => ~A~%" ',forms `(,,@forms))) #-swank (declare (ignore forms))) (defmacro define-int-types (&rest bits) `(progn ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits) ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits))) (define-int-types 2 4 7 8 15 16 31 32 62 63 64) (declaim (inline println)) (defun println (obj &optional (stream *standard-output*)) (let ((*read-default-float-format* 'double-float)) (prog1 (princ obj stream) (terpri stream)))) (defconstant +mod+ 1000000007) ;;; ;;; Body ;;; (defun main () (let ((res 0) (modulus 1)) (dotimes (i 3) (let ((x (read)) (y (read))) (multiple-value-setq (res modulus) (chinese-rem res modulus x y)) (unless res (println -1) (return-from main)))) (println res))) #-swank (main) ;;; ;;; Test and benchmark ;;; #+swank (defun io-equal (in-string out-string &key (function #'main) (test #'equal)) "Passes IN-STRING to *STANDARD-INPUT*, executes FUNCTION, and returns true if the string output to *STANDARD-OUTPUT* is equal to OUT-STRING." (labels ((ensure-last-lf (s) (if (eql (uiop:last-char s) #\Linefeed) s (uiop:strcat s uiop:+lf+)))) (funcall test (ensure-last-lf out-string) (with-output-to-string (out) (let ((*standard-output* out)) (with-input-from-string (*standard-input* (ensure-last-lf in-string)) (funcall function))))))) #+swank (defun get-clipbrd () (with-output-to-string (out) (run-program "C:/msys64/usr/bin/cat.exe" '("/dev/clipboard") :output out))) #+swank (defparameter *this-pathname* (uiop:current-lisp-file-pathname)) #+swank (defparameter *dat-pathname* (uiop:merge-pathnames* "test.dat" *this-pathname*)) #+swank (defun run (&optional thing (out *standard-output*)) "THING := null | string | symbol | pathname null: run #'MAIN using the text on clipboard as input. string: run #'MAIN using the string as input. symbol: alias of FIVEAM:RUN!. pathname: run #'MAIN using the text file as input." (let ((*standard-output* out)) (etypecase thing (null (with-input-from-string (*standard-input* (delete #\Return (get-clipbrd))) (main))) (string (with-input-from-string (*standard-input* (delete #\Return thing)) (main))) (symbol (5am:run! thing)) (pathname (with-open-file (*standard-input* thing) (main)))))) #+swank (defun gen-dat () (uiop:with-output-file (out *dat-pathname* :if-exists :supersede) (format out ""))) #+swank (defun bench (&optional (out (make-broadcast-stream))) (time (run *dat-pathname* out)))