import Control.Monad import Data.Maybe import qualified Data.ByteString.Char8 as BS tuplify2 (x:y:_) = (x,y) tuplify2 _ = undefined --Input functions with ByteString readInt = fromInteger . fst . fromJust . BS.readInteger readIntTuple = tuplify2 . map readInt . BS.words readIntList = map readInt . BS.words getInt = readInt <$> BS.getLine getIntList = readIntList <$> BS.getLine getIntNList n = map readIntList <$> replicateM (fromIntegral n) BS.getLine getIntMatrix = map readIntList . BS.lines <$> BS.getContents getIntTuple = readIntTuple <$> BS.getLine getIntNTuples n = map readIntTuple <$> replicateM (fromIntegral n) BS.getLine getIntTuples = map readIntTuple . BS.lines <$> BS.getContents data SegmentTree = Node Int Int SegmentTree SegmentTree | Leaf Int deriving Show newTree :: [Int] -> SegmentTree newTree lis | n == 1 = Leaf $ head lis | otherwise = Node value n left right where n = length lis half = n `div` 2 left = newTree $ take half lis right = newTree $ drop half lis value = min (val left) (val right) query :: Int -> Int -> SegmentTree -> (Int, Int) query _ _ (Leaf v) = (0, v) query from to (Node v n left right) | to < half = qLeft | half <= from = qRight | from < half && half <= to = minTuple qLeft qRight where half = n `div` 2 qLeft = query from to left qRight = ((fst qRightRaw) + half, snd qRightRaw) qRightRaw = query (from - half) (to - half) right minTuple t1 t2 = if (snd t1) < (snd t2) then t1 else t2 update :: Int -> Int -> SegmentTree -> SegmentTree update _ newval (Leaf v) = Leaf newval update index newval (Node v n left right) | index < half = Node (min (val newLeft) (val right)) n newLeft right | otherwise = Node (min (val left) (val newRight)) n left newRight where half = n `div` 2 newLeft = update index newval left newRight = update (index - half) newval right val :: SegmentTree -> Int val (Node value _ _ _) = value val (Leaf value) = value main = do [n, q] <- getIntList a <- getIntList ops <- replicateM q $ getIntList let tree = newTree a operate tree ops operate :: SegmentTree -> [[Int]] -> IO () operate tree [] = return () operate tree (op:ops) = do let [operation, ap, bp] = op let a = ap - 1 let b = bp - 1 case operation of 1 -> do let (aind, aval) = query a a tree let (bind, bval) = query b b tree let newTree1 = update aind bval tree let newTree2 = update bind aval newTree1 operate newTree2 ops 2 -> do print $ (+1) $ fst (query a b tree) operate tree ops