//蟻本参照 //拡張gcdやmod_invなどもある #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define MOD (long long int)(1e9+7) #define ll long long int #define rep(i,n) for(int i=0; i<(int)(n); i++) #define reps(i,n) for(int i=1; i<=(int)(n); i++) #define REP(i,n) for(int i=n-1; i>=0; i--) #define REPS(i,n) for(int i=n; i>0; i--) #define INF (int)(123456789) //#define LINF (long long int)(123456789012345678) #define LINF (long long int)(((ll)1<<31)-1) #define all(v) v.begin(), v.end() ll mpow(ll a, ll b){ if(b==0) return 1; else if(b%2==0){ll memo = mpow(a,b/2); return memo*memo%MOD;} else return mpow(a,b-1) * a % MOD; } ll gcd(ll a, ll b){ if(b==0) return a; else return gcd(b, a%b); } vector kaijo_memo; ll kaijo(ll n){ if(kaijo_memo.size() > n) return kaijo_memo[n]; if(kaijo_memo.size() == 0) kaijo_memo.push_back(1); while(kaijo_memo.size() <= n) kaijo_memo.push_back(kaijo_memo[kaijo_memo.size()-1] * kaijo_memo.size() % MOD); return kaijo_memo[n]; } vector gyaku_kaijo_memo; ll gyaku_kaijo(ll n){ if(gyaku_kaijo_memo.size() > n) return gyaku_kaijo_memo[n]; if(gyaku_kaijo_memo.size() == 0) gyaku_kaijo_memo.push_back(1); while(gyaku_kaijo_memo.size() <= n) gyaku_kaijo_memo.push_back(gyaku_kaijo_memo[gyaku_kaijo_memo.size()-1] * mpow(gyaku_kaijo_memo.size(), MOD-2) % MOD); return gyaku_kaijo_memo[n]; } ll nCr(ll n, ll r){ if(n == r) return 1;//0個の丸と-1個の棒みたいな時に時に効く?不安. if(n < r || r < 0) return 0; ll ret = 1; ret *= kaijo(n); ret %= MOD; ret *= gyaku_kaijo(r); ret %= MOD; ret *= gyaku_kaijo(n-r); ret %= MOD; return ret; } ll extgcd(ll a, ll b, ll &x, ll &y) { ll g = a; x = 1; y = 0; if (b != 0) g = extgcd(b, a % b, y, x), y -= (a / b) * x; return g; } //aとmが互いに素でないと逆元は存在しない ll mod_inverse(ll a, ll m){ ll x,y; extgcd(a, m, x, y); return (m + x % m) % m; } //A[i] * x = B[i] (mod M[i])という連立方程式を解く //解はb(mod m) という形になり, (b,m)を返す pair linear_congruence(const vector& A, const vector& B, const vector& M){ //最初は条件がないので全ての整数を意味するx=0 (mod 1)を解としておく ll x=0, m=1; rep(i, A.size()){ ll a = A[i] * m, b = B[i] - A[i] * x, d = gcd(M[i], a); if(b%d != 0) return make_pair(0, -1);//解がない ll t = b/d * mod_inverse(a/d, M[i]/d) % (M[i]/d); x = x + m*t; m *= M[i]/d; } return make_pair(x%m, m); } int main(void){ vector A,B,M; rep(i,3){ ll x,y; cin>>x>>y; A.push_back(1); B.push_back(x); M.push_back(y); } pair ans = linear_congruence(A, B, M); if(ans.second == -1){ cout<<-1<