#include using namespace std; #define ll long long /* aとbの最大公約数を求める. */ ll gcd(ll a, ll b){ if (b > a) return gcd(b, a); if (b == 0) return a; return gcd(b, a % b); } /* ax+by=gcd(a,b)を満たす(x,y)を格納し、gcd(a,b)を返す. */ ll extgcd(ll a, ll b, ll& x, ll& y){ if (b > a) return extgcd(b, a, y, x); if (b == 0){ x = 1; y = 0; return a; } int g = extgcd(b, a % b, y, x); y -= (a / b) * x; return g; } /* mod mでのaの逆元を求める.(gcd(a,m) = 1) */ ll modinv(ll a, ll m){ ll x, y; extgcd(a, m, x, y); return (m + x % m) % m; } /* 連立線形方程式を解く. A[i] * x ≡ B[i] (mod M[i]) なる方程式の解が x ≡ b (mod m) とかけるとき、(b, m)を返す.(存在しなければ(0, -1)) */ pair liner_congruence( vector A, vector B, vector M ){ ll x = 0, m = 1; for (int i = 0; i < A.size(); ++i){ ll a = A[i] * m, b = B[i] - A[i] * x, d = gcd(M[i], a); if (b % d != 0) // 解なし return make_pair(0, -1); ll t = b / d * modinv(a / d, M[i] / d) % (M[i] / d); x = x + m * t; m *= M[i] / d; } return make_pair((m + x % m) % m, m); } signed main(){ vector a(3); a[0] = a[1] = a[2] = 1; vector b(3), m(3); for (int i = 0; i < 3; ++i){ ll x, y; cin >> x >> y; b[i] = x; m[i] = y; } auto ans = liner_congruence(a, b, m); if (ans.second == -1) cout << -1 << endl; else cout << ans.first << endl; return 0; }