#ifdef stderr_path #define LOCAL #define _GLIBCXX_DEBUG #endif #pragma GCC optimize("Ofast") #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // #define NDEBUG #define debug_stream std::cerr #define iostream_untie true #define __precision__ 10 #define rep(i, n) for(int i = 0; i < int(n); ++i) #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #define __odd(n) ((n)&1) #define __even(n) (__odd(n) ^ 1) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(int32_t(n)) #define __clz64(n) __builtin_clzll(int64_t(n)) #define __ctz32(n) __builtin_ctz(int32_t(n)) #define __ctz64(n) __builtin_ctzll(int64_t(n)) using i64 = int_fast64_t; using pii = std::pair; using pll = std::pair; template using heap = std::priority_queue; template using minheap = std::priority_queue, std::greater>; template constexpr T inf = std::numeric_limits::max() / T(2) - T(1123456); namespace execution { std::chrono::system_clock::time_point start_time, end_time; void print_elapsed_time() { end_time = std::chrono::system_clock::now(); std::cerr << "\n----- Exec time : "; std::cerr << std::chrono::duration_cast( end_time - start_time) .count(); std::cerr << " ms -----\n\n"; } struct setupper { setupper() { if(iostream_untie) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } std::cout << std::fixed << std::setprecision(__precision__); #ifdef stderr_path if(freopen(stderr_path, "a", stderr)) { std::cerr << std::fixed << std::setprecision(__precision__); } else fclose(stderr); #endif #ifdef stdout_path if(not freopen(stdout_path, "w", stdout)) { freopen("CON", "w", stdout); std::cerr << "Failed to open the stdout file\n\n"; } std::cout << ""; #endif #ifdef stdin_path if(not freopen(stdin_path, "r", stdin)) { freopen("CON", "r", stdin); std::cerr << "Failed to open the stdin file\n\n"; } #endif #ifdef LOCAL atexit(print_elapsed_time); start_time = std::chrono::system_clock::now(); #endif } } __setupper; } // namespace execution class myclock_t { std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built; public: explicit myclock_t() : is_built(false) {} void build(int crt_ln, const std::string &crt_func) { is_built = true; last_pt = built_pt = std::chrono::system_clock::now(); last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) { last_pt = std::chrono::system_clock::now(); last_ln = crt_ln, last_func = crt_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n"; } } void get(int crt_ln, const std::string &crt_func) { if(is_built) { std::chrono::system_clock::time_point crt_pt( std::chrono::system_clock::now()); int64_t diff = std::chrono::duration_cast(crt_pt - last_pt) .count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n"; } } }; #ifdef LOCAL myclock_t __myclock; #define build_clock() __myclock.build(__LINE__, __func__) #define set_clock() __myclock.set(__LINE__, __func__) #define get_clock() __myclock.get(__LINE__, __func__) #else #define build_clock() ((void)0) #define set_clock() ((void)0) #define get_clock() ((void)0) #endif namespace std { template void rsort(RAitr __first, RAitr __last) { sort(__first, __last, greater<>()); } template size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template struct hash> { size_t operator()(pair const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template ::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine( tuple_hash_calc::apply(seed, t), get(t)); } }; template struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template struct hash> { size_t operator()(tuple const &t) const { return tuple_hash_calc>::apply(0, t); } }; template istream &operator>>(std::istream &s, pair &p) { return s >> p.first >> p.second; } template ostream &operator<<(std::ostream &s, const pair p) { return s << p.first << " " << p.second; } template istream &operator>>(istream &s, vector &v) { for(T &e : v) { s >> e; } return s; } template ostream &operator<<(ostream &s, const vector &v) { bool is_front = true; for(const T &e : v) { if(not is_front) { s << ' '; } else { is_front = false; } s << e; } return s; } template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { tupleos::apply(s, t); return s << " " << get(t); } }; template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { return s << get<0>(t); } }; template ostream &operator<<(ostream &s, const tuple &t) { return tupleos, tuple_size>::value - 1>::apply( s, t); } template <> ostream &operator<<(ostream &s, const tuple<> &t) { return s; } string revstr(string str) { reverse(str.begin(), str.end()); return str; } } // namespace std #ifdef LOCAL #define dump(...) \ debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \ dump_func(#__VA_ARGS__, __VA_ARGS__) template void dump_func(const char *ptr, const T &x) { debug_stream << '\t'; for(char c = *ptr; c != '\0'; c = *++ptr) { if(c != ' ') debug_stream << c; } debug_stream << " : " << x << '\n'; } template void dump_func(const char *ptr, const T &x, rest_t... rest) { debug_stream << '\t'; for(char c = *ptr; c != ','; c = *++ptr) { if(c != ' ') debug_stream << c; } debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...); } #else #define dump(...) ((void)0) #endif template void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; } template void write_range(P __first, P __second) { for(P i = __first; i != __second; std::cout << (++i == __second ? '\n' : ' ')) { std::cout << *i; } } // substitute y for x. template void subst(T &x, const T &y) { x = y; } // substitue y for x iff x > y. template bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitue y for x iff x < y. template bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; } template constexpr T minf(const T &x, const T &y) { return std::min(x, y); } template constexpr T maxf(const T &x, const T &y) { return std::max(x, y); } // binary search. template int_t bin(int_t ok, int_t ng, const F &f) { while(std::abs(ok - ng) > 1) { int_t mid = (ok + ng) / 2; (f(mid) ? ok : ng) = mid; } return ok; } template void init(A (&array)[N], const T &val) { std::fill((T *)array, (T *)(array + N), val); } void reset() {} template void reset(A &array, rest_t... rest) { memset(array, 0, sizeof(array)); reset(rest...); } // a integer uniformly and randomly chosen from the interval [l, r). template int_t rand_int(int_t l, int_t r) { static std::random_device seed_gen; static std::mt19937 engine(seed_gen()); std::uniform_int_distribution unid(l, r - 1); return unid(engine); } // a real number uniformly and randomly chosen from the interval [l, r). template real_t rand_real(real_t l, real_t r) { static std::random_device seed_gen; static std::mt19937 engine(seed_gen()); std::uniform_real_distribution unid(l, r); return unid(engine); } /* The main code follows. */ namespace math { template struct modint { int x; constexpr modint() : x(0) {} constexpr modint(int_fast64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} constexpr modint &operator+=(const modint &p) { if((x += p.x) >= mod) x -= mod; return *this; } constexpr modint &operator++() { return ++x, *this; } constexpr modint operator++(int) { modint t = *this; return ++x, t; } constexpr modint &operator-=(const modint &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } constexpr modint &operator--() { return --x, *this; } constexpr modint operator--(int) { modint t = *this; return --x, t; } constexpr modint &operator*=(const modint &p) { return x = (int_fast64_t)x * p.x % mod, *this; } constexpr modint &operator/=(const modint &p) { return *this *= inverse(p); } // constexpr modint &operator%=(int m) { return x %= m, *this; } constexpr modint operator-() const { return modint(-x); } constexpr modint operator+(const modint &p) const { return modint(*this) += p; } constexpr modint operator-(const modint &p) const { return modint(*this) -= p; } constexpr modint operator*(const modint &p) const { return modint(*this) *= p; } constexpr modint operator/(const modint &p) const { return modint(*this) /= p; } // constexpr modint operator%(int m) const { return modint(*this) %= m; // } constexpr bool operator==(const modint &p) const { return x == p.x; } constexpr bool operator!=(const modint &p) const { return x != p.x; } constexpr bool operator!() const { return !x; } // constexpr bool operator>(const modint &p) const { return x > p.x; } // constexpr bool operator<(const modint &p) const { return x < p.x; } // constexpr bool operator>=(const modint &p) const { return x >= p.x; } // constexpr bool operator<=(const modint &p) const { return x <= p.x; } constexpr friend modint inverse(const modint &p) { int a = p.x, b = mod, u = 1, v = 0; while(b > 0) { int t = a / b; a -= t * b; a ^= b ^= a ^= b; u -= t * v; u ^= v ^= u ^= v; } return modint(u); } constexpr friend modint pow(modint p, int_fast64_t e) { if(e < 0) e = (e % (mod - 1) + mod - 1) % (mod - 1); modint ret = 1; while(e) { if(e & 1) ret *= p; p *= p; e >>= 1; } return ret; } friend std::ostream &operator<<(std::ostream &s, const modint &p) { return s << p.x; } friend std::istream &operator>>(std::istream &s, modint &p) { int_fast64_t x; p = modint((s >> x, x)); return s; } }; } // namespace math template // K must be a field. struct matrix { std::vector> mat; matrix() {} matrix(size_t n) { assign(n, n); } matrix(size_t h, size_t w) { assign(h, w); } matrix(const matrix &x) : mat(x.mat) {} matrix(const std::vector> _mat) : mat(_mat) {} void resize(size_t h, size_t w, const K v = K(0)) { mat.resize(h, std::vector(w, v)); } void assign(size_t h, size_t w, const K v = K()) { mat.assign(h, std::vector(w, v)); } size_t height() const { return mat.size(); } size_t width() const { return mat.empty() ? 0 : mat[0].size(); } bool is_square() const { return height() == width(); } std::vector &operator[](const size_t i) { return mat[i]; } static matrix identity(size_t n) { matrix ret(n, n); for(size_t i = 0; i < n; ++i) ret[i][i] = K(1); return ret; } matrix operator-() const { size_t h = height(), w = width(); matrix res(*this); for(size_t i = 0; i < h; ++i) { for(size_t j = 0; j < w; ++j) { res[i][j] = -mat[i][j]; } } return res; } matrix operator&(const matrix &x) const { return matrix(*this) &= x; } matrix operator|(const matrix &x) const { return matrix(*this) |= x; } matrix operator^(const matrix &x) const { return matrix(*this) ^= x; } matrix operator+(const matrix &x) const { return matrix(*this) += x; } matrix operator-(const matrix &x) const { return matrix(*this) -= x; } matrix operator*(const matrix &x) const { return matrix(*this) *= x; } matrix &operator&=(const matrix &x) { size_t h = height(), w = width(); assert(h == x.height() and w == x.width()); for(size_t i = 0; i < h; ++i) { for(size_t j = 0; j < w; ++j) { mat[i][j] &= x.mat[i][j]; } } return *this; } matrix &operator|=(const matrix &x) { size_t h = height(), w = width(); assert(h == x.height() and w == x.width()); for(size_t i = 0; i < h; ++i) { for(size_t j = 0; j < w; ++j) { mat[i][j] |= x.mat[i][j]; } } return *this; } matrix &operator^=(const matrix &x) { size_t h = height(), w = width(); assert(h == x.height() and w == x.width()); for(size_t i = 0; i < h; ++i) { for(size_t j = 0; j < w; ++j) { mat[i][j] ^= x.mat[i][j]; } } return *this; } matrix &operator+=(const matrix &x) { size_t h = height(), w = width(); assert(h == x.height() and w == x.width()); for(size_t i = 0; i < h; ++i) { for(size_t j = 0; j < w; ++j) { mat[i][j] += x.mat[i][j]; } } return *this; } matrix &operator-=(const matrix &x) { size_t h = height(), w = width(); assert(h == x.height() and w == x.width()); for(size_t i = 0; i < h; ++i) { for(size_t j = 0; j < w; ++j) { mat[i][j] -= x.mat[i][j]; } } return *this; } matrix &operator*=(const matrix &x) { size_t l = height(), m = width(), n = x.width(); assert(m == x.height()); matrix res(l, n); for(size_t i = 0; i < l; ++i) { for(size_t j = 0; j < m; ++j) { for(size_t k = 0; k < n; ++k) { res[i][k] += mat[i][j] * x.mat[j][k]; } } } return *this = res; } friend matrix pow(matrix x, int_fast64_t n) { assert(x.is_square()); matrix res = identity(x.height()); while(n) { if(n & 1) res *= x; x *= x; n >>= 1; } return res; } friend matrix inverse(const matrix &x) { assert(x.is_square()); size_t n = x.height(); matrix ext_x(x), e(identity(n)), res(n); for(size_t i = 0; i < n; ++i) ext_x[i].insert(end(ext_x[i]), begin(e[i]), end(e[i])); ext_x = ext_x.row_canonical_form(); for(size_t i = 0; i < n; ++i) { if(std::vector(begin(ext_x[i]), begin(ext_x[i]) + n) != e[i]) return matrix(); res[i] = std::vector(begin(ext_x[i]) + n, end(ext_x[i])); } return res; } matrix row_canonical_form() { size_t h = height(), w = width(), rank = 0; matrix res(*this); for(size_t j = 0; j < w; ++j) { bool piv = false; for(size_t i = rank; i < h; ++i) { if(res[i][j] != K(0)) { if(piv) { K r = -res[i][j]; for(size_t k = j; k < w; ++k) { res[i][k] += res[rank][k] * r; } } else { swap(res[rank], res[i]); K r = res[rank][j]; for(size_t k = j; k < w; ++k) { res[rank][k] /= r; } for(size_t k = 0; k < rank; ++k) { r = -res[k][j]; for(size_t l = j; l < w; ++l) { res[k][l] += res[rank][l] * r; } } piv = true; } } } if(piv) ++rank; } return res; } K det() const { matrix x(*this); assert(is_square()); size_t n = height(); K res(1); for(size_t j = 0; j < n; ++j) { bool piv = false; for(size_t i = j; i < n; ++i) { if(x[i][j] != K(0)) { if(piv) { const K r = -x[i][j]; for(size_t k = j; k < n; ++k) { x[i][k] += x[j][k] * r; } } else { swap(x[i], x[j]); if(i != j) res = -res; const K r = x[j][j]; res *= r; for(size_t k = j; k < n; ++k) { x[j][k] /= r; } piv = true; } } } if(not piv) { return K(0); } } return res; } friend std::istream &operator>>(std::istream &s, matrix &x) { size_t h = x.height(), w = x.width(); for(size_t i = 0; i < h; ++i) { for(size_t j = 0; j < w; ++j) { s >> x[i][j]; } } return s; } friend std::ostream &operator<<(std::ostream &s, const matrix &x) { size_t h = x.height(), w = x.width(); for(size_t i = 0; i < h; ++i) { if(i) s << "\n"; for(size_t j = 0; j < w; ++j) { s << (j ? " " : "") << x.mat[i][j]; } } return s; } }; using namespace std; using namespace math; signed main() { void __solve(); void __precalc(); unsigned int t = 1; // cin >> t; __precalc(); #ifdef LOCAL t=3; #endif while(t--) { __solve(); } } void __precalc() {} void __solve() { int a,b,n; cin>>a>>b>>n; matrix> m(3,3),v(3,1); m[0]={a,b,0},m[1]={1,0,0},m[2]={0,1,0}; m=pow(m,n); v[0][0]=a,v[1][0]=1; v=m*v; std::cout << v[2][0] << "\n"; }