class Combination:
    '''MOD上の
    計算量:階乗・逆元テーブルの作成O(N)
    nCkを求めるO(1)'''

    def __init__(self, n, MOD):
        self.fact = [1]
        for i in range(1, n + 1):
            self.fact.append(self.fact[-1] * i % MOD)
        self.inv_fact = [pow(self.fact[i], MOD - 2, MOD) for i in range(n + 1)]
        self.MOD = MOD

    def factorial(self, k):
        """k!を求める O(1)"""
        return self.fact[k]

    def inverse_factorial(self, k):
        """k!の逆元を求める O(1)"""
        return self.inv_fact[k]

    def permutation(self, k, r):
        """kPrを求める O(1)"""
        if k < r:
            return 0
        return (self.fact[k] * self.inv_fact[r]) % self.MOD

    def combination(self, k, r):
        """kCrを求める O(1)"""
        if k < r:
            return 0
        return (self.fact[k] * self.inv_fact[k - r] * self.inv_fact[r]) % self.MOD


def make_divisors(n):
    """自然数nの約数を列挙したリストを出力する
    計算量: O(sqrt(N))
    入出力例: 12 -> [1, 2, 3, 4, 6, 12]
    """
    divisors = []
    for k in range(1, int(n**0.5) + 1):
        if n % k == 0:
            divisors.append(k)
            if k != n // k:
                divisors.append(n // k)
    divisors = sorted(divisors)
    return divisors


def gcd(a, b):
    """a, bの最大公約数(greatest common divisor:GCD)を求める"""
    if b == 0:
        return a
    return gcd(b, a%b)


n, k = map(int, input().split())
MOD = 10**9 + 7
comb = Combination(10**6 + 10, MOD)

gcd_nk = gcd(n, k)
div_list = make_divisors(gcd_nk)

li = []
memo = {}
for num in div_list:
    if num == 1:
        continue
    total = n // num
    selected = k // num
    tmp = comb.combination(total, selected)
    li.append(num)
    memo[num] = tmp

li = li[::-1]
for i in range(len(li)):
    for j in range(i):
        if li[j] % li[i] == 0:
            memo[li[i]] -= memo[li[j]]
            memo[li[i]] %= MOD

ans = 0
for i in memo:
    ans += memo[i]
    ans %= MOD
print(ans)