;; -*- coding: utf-8 -*- (eval-when (:compile-toplevel :load-toplevel :execute) (sb-int:defconstant-eqx OPT #+swank '(optimize (speed 3) (safety 2)) #-swank '(optimize (speed 3) (safety 0) (debug 0)) #'equal) #+swank (ql:quickload '(:cl-debug-print :fiveam) :silent t) #-swank (set-dispatch-macro-character #\# #\> (lambda (s c p) (declare (ignore c p)) (read s nil nil t)))) #+swank (cl-syntax:use-syntax cl-debug-print:debug-print-syntax) #-swank (disable-debugger) ; for CS Academy ;; BEGIN_INSERTED_CONTENTS ;;; ;;; Arithmetic operations with static modulus ;;; (defmacro define-mod-operations (&optional (divisor 1000000007)) `(progn (defun mod* (&rest args) (reduce (lambda (x y) (mod (* x y) ,divisor)) args)) (sb-c:define-source-transform mod* (&rest args) (if (null args) 1 (reduce (lambda (x y) `(mod (* ,x ,y) ,',divisor)) args))) (defun mod+ (&rest args) (reduce (lambda (x y) (mod (+ x y) ,divisor)) args)) (sb-c:define-source-transform mod+ (&rest args) (if (null args) 0 (reduce (lambda (x y) `(mod (+ ,x ,y) ,',divisor)) args))) (define-modify-macro incfmod (delta) (lambda (x y) (mod (+ x y) ,divisor))) (define-modify-macro decfmod (delta) (lambda (x y) (mod (- x y) ,divisor))) (define-modify-macro mulfmod (multiplier) (lambda (x y) (mod (* x y) ,divisor))))) ;;; ;;; Binomial coefficient with mod ;;; build: O(n) ;;; query: O(1) ;;; ;; TODO: non-global handling (defconstant +binom-size+ 1100000) (defconstant +binom-mod+ #.(+ (expt 10 9) 7)) (declaim ((simple-array (unsigned-byte 32) (*)) *fact* *fact-inv* *inv*)) (defparameter *fact* (make-array +binom-size+ :element-type '(unsigned-byte 32)) "table of factorials") (defparameter *fact-inv* (make-array +binom-size+ :element-type '(unsigned-byte 32)) "table of inverses of factorials") (defparameter *inv* (make-array +binom-size+ :element-type '(unsigned-byte 32)) "table of inverses of non-negative integers") (defun initialize-binom () (declare (optimize (speed 3) (safety 0))) (setf (aref *fact* 0) 1 (aref *fact* 1) 1 (aref *fact-inv* 0) 1 (aref *fact-inv* 1) 1 (aref *inv* 1) 1) (loop for i from 2 below +binom-size+ do (setf (aref *fact* i) (mod (* i (aref *fact* (- i 1))) +binom-mod+) (aref *inv* i) (- +binom-mod+ (mod (* (aref *inv* (rem +binom-mod+ i)) (floor +binom-mod+ i)) +binom-mod+)) (aref *fact-inv* i) (mod (* (aref *inv* i) (aref *fact-inv* (- i 1))) +binom-mod+)))) (initialize-binom) (declaim (inline binom)) (defun binom (n k) "Returns nCk." (if (or (< n k) (< n 0) (< k 0)) 0 (mod (* (aref *fact* n) (mod (* (aref *fact-inv* k) (aref *fact-inv* (- n k))) +binom-mod+)) +binom-mod+))) (declaim (inline perm)) (defun perm (n k) "Returns nPk." (if (or (< n k) (< n 0) (< k 0)) 0 (mod (* (aref *fact* n) (aref *fact-inv* (- n k))) +binom-mod+))) ;; TODO: compiler macro or source-transform (declaim (inline multinomial)) (defun multinomial (&rest ks) "Returns the multinomial coefficient K!/k_1!k_2!...k_n! for K = k_1 + k_2 + ... + k_n. K must be equal to or smaller than MOST-POSITIVE-FIXNUM. (multinomial) returns 1." (let ((sum 0) (result 1)) (declare ((integer 0 #.most-positive-fixnum) result sum)) (dolist (k ks) (incf sum k) (setq result (mod (* result (aref *fact-inv* k)) +binom-mod+))) (mod (* result (aref *fact* sum)) +binom-mod+))) (declaim (ftype (function * (values simple-bit-vector &optional)) make-prime-table)) (defun make-prime-table (sup) "Returns a simple-bit-vector of length SUP, whose (0-based) i-th bit is 1 if i is prime and 0 otherwise. Example: (make-prime-table 10) => #*0011010100" (declare (optimize (speed 3) (safety 0))) (check-type sup (integer 2 (#.array-total-size-limit))) (let ((table (make-array sup :element-type 'bit :initial-element 0)) (sup/64 (ceiling sup 64))) ;; special treatment for p = 2 (dotimes (i sup/64) (setf (sb-kernel:%vector-raw-bits table i) #xAAAAAAAAAAAAAAAA)) (setf (sbit table 1) 0 (sbit table 2) 1) ;; p >= 3 (loop for p from 3 to (+ 1 (isqrt (- sup 1))) by 2 when (= 1 (sbit table p)) do (loop for composite from (* p p) below sup by p do (setf (sbit table composite) 0))) table)) ;; FIXME: Currently the element type of the resultant vector is (UNSIGNED-BYTE 62). (defun make-prime-sequence (sup) "Returns the ascending sequence of primes smaller than SUP." (declare (optimize (speed 3) (safety 0))) (check-type sup (integer 2 (#.array-total-size-limit))) (let ((table (make-prime-table sup))) (let* ((length (count 1 table)) (result (make-array length :element-type '(integer 0 #.most-positive-fixnum))) (index 0)) (declare ((integer 0 #.most-positive-fixnum) length)) (loop for x below sup when (= 1 (sbit table x)) do (setf (aref result index) x) (incf index)) (values result table)))) (defstruct (prime-data (:constructor %make-prime-data (seq table))) (seq nil :type (simple-array (integer 0 #.most-positive-fixnum) (*))) (table nil :type simple-bit-vector)) (defun make-prime-data (sup) (multiple-value-call #'%make-prime-data (make-prime-sequence sup))) (declaim (inline factorize) (ftype (function * (values list &optional)) factorize)) (defun factorize (x prime-data) "Returns the associative list of prime factors of X, which is composed of ( . ). E.g. (factorize 100 ) => '((2 . 2) (5 . 5)). - Any numbers beyond the range of PRIME-DATA are regarded as prime. - The returned list is in descending order w.r.t. prime factors." (declare (integer x)) (setq x (abs x)) (when (<= x 1) (return-from factorize nil)) (let ((prime-seq (prime-data-seq prime-data)) result) (loop for prime of-type unsigned-byte across prime-seq do (when (= x 1) (return-from factorize result)) (loop for exponent of-type (integer 0 #.most-positive-fixnum) from 0 do (multiple-value-bind (quot rem) (floor x prime) (if (zerop rem) (setf x quot) (progn (when (> exponent 0) (push (cons prime exponent) result)) (loop-finish)))))) (if (= x 1) result (cons (cons x 1) result)))) (defun make-omega-table (sup prime-data) "Returns the table of prime omega function on {0, 1, ..., SUP-1}." (declare ((integer 0 #.most-positive-fixnum) sup)) ;; (assert (>= (expt (aref prime-seq (- (length prime-seq) 1)) 2) (- sup 1))) (let ((prime-seq (prime-data-seq prime-data)) (table (make-array sup :element-type '(unsigned-byte 32))) (res (make-array sup :element-type '(unsigned-byte 8)))) (dotimes (i (length table)) (setf (aref table i) i)) (loop for p of-type (integer 0 #.most-positive-fixnum) across prime-seq do (loop for i from p below sup by p do (loop (multiple-value-bind (quot rem) (floor (aref table i) p) (if (zerop rem) (progn (incf (aref res i)) (setf (aref table i) quot)) (return)))))) (loop for i below sup unless (= 1 (aref table i)) do (incf (aref res i))) res)) (defmacro dbg (&rest forms) #+swank (if (= (length forms) 1) `(format *error-output* "~A => ~A~%" ',(car forms) ,(car forms)) `(format *error-output* "~A => ~A~%" ',forms `(,,@forms))) #-swank (declare (ignore forms))) (defmacro define-int-types (&rest bits) `(progn ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "UINT~A" b)) () '(unsigned-byte ,b))) bits) ,@(mapcar (lambda (b) `(deftype ,(intern (format nil "INT~A" b)) () '(signed-byte ,b))) bits))) (define-int-types 2 4 7 8 15 16 31 32 62 63 64) (declaim (inline println)) (defun println (obj &optional (stream *standard-output*)) (let ((*read-default-float-format* 'double-float)) (prog1 (princ obj stream) (terpri stream)))) (defconstant +mod+ 1000000007) ;;; ;;; Body ;;; (define-mod-operations +mod+) (defun main () (let* ((pdata (make-prime-data 1000)) (n (read)) (k (read)) (pfactors (factorize n pdata)) (ps (map '(simple-array uint32 (*)) #'car pfactors)) (size (length pfactors)) (res 0)) (declare (uint31 n k res) ((integer 0 10) size)) (dotimes (bits (expt 2 size)) (let ((freq 1)) (declare (uint31 freq)) (dotimes (pos size) (when (logbitp pos bits) (setq freq (* freq (aref ps pos))))) (when (and (/= freq 1) (zerop (mod k freq))) (let ((delta (binom (floor n freq) (floor k freq)))) (if (oddp (logcount bits)) (incfmod res delta) (incfmod res (- +mod+ delta))))))) (println res))) #-swank (main) ;;; ;;; Test and benchmark ;;; #+swank (defun io-equal (in-string out-string &key (function #'main) (test #'equal)) "Passes IN-STRING to *STANDARD-INPUT*, executes FUNCTION, and returns true if the string output to *STANDARD-OUTPUT* is equal to OUT-STRING." (labels ((ensure-last-lf (s) (if (eql (uiop:last-char s) #\Linefeed) s (uiop:strcat s uiop:+lf+)))) (funcall test (ensure-last-lf out-string) (with-output-to-string (out) (let ((*standard-output* out)) (with-input-from-string (*standard-input* (ensure-last-lf in-string)) (funcall function))))))) #+swank (defun get-clipbrd () (with-output-to-string (out) (run-program "C:/msys64/usr/bin/cat.exe" '("/dev/clipboard") :output out))) #+swank (defparameter *this-pathname* (uiop:current-lisp-file-pathname)) #+swank (defparameter *dat-pathname* (uiop:merge-pathnames* "test.dat" *this-pathname*)) #+swank (defun run (&optional thing (out *standard-output*)) "THING := null | string | symbol | pathname null: run #'MAIN using the text on clipboard as input. string: run #'MAIN using the string as input. symbol: alias of FIVEAM:RUN!. pathname: run #'MAIN using the text file as input." (let ((*standard-output* out)) (etypecase thing (null (with-input-from-string (*standard-input* (delete #\Return (get-clipbrd))) (main))) (string (with-input-from-string (*standard-input* (delete #\Return thing)) (main))) (symbol (5am:run! thing)) (pathname (with-open-file (*standard-input* thing) (main)))))) #+swank (defun gen-dat () (uiop:with-output-file (out *dat-pathname* :if-exists :supersede) (format out ""))) #+swank (defun bench (&optional (out (make-broadcast-stream))) (time (run *dat-pathname* out)))