#ifdef stderr_path #define LOCAL #endif #ifdef LOCAL #define _GLIBCXX_DEBUG #else #pragma GCC optimize("Ofast") #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // #define NDEBUG #define debug_stream std::cerr #define iostream_untie true #define __precision__ 10 #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #define __odd(n) ((n)&1) #define __even(n) (not __odd(n)) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(n) #define __clz64(n) __builtin_clzll(n) #define __ctz32(n) __builtin_ctz(n) #define __ctz64(n) __builtin_ctzll(n) using i64 = int_fast64_t; using pii = std::pair; using pll = std::pair; template using heap = std::priority_queue; template using minheap = std::priority_queue, std::greater>; template constexpr T inf = std::numeric_limits::max() / T(2) - T(1123456); namespace execution { std::chrono::system_clock::time_point start_time, end_time; void print_elapsed_time() { end_time = std::chrono::system_clock::now(); std::cerr << "\n----- Exec time : "; std::cerr << std::chrono::duration_cast( end_time - start_time) .count(); std::cerr << " ms -----\n\n"; } struct setupper { setupper() { if(iostream_untie) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } std::cout << std::fixed << std::setprecision(__precision__); #ifdef stderr_path if(freopen(stderr_path, "a", stderr)) { std::cerr << std::fixed << std::setprecision(__precision__); } #endif #ifdef stdout_path if(not freopen(stdout_path, "w", stdout)) { freopen("CON", "w", stdout); std::cerr << "Failed to open the stdout file\n\n"; } std::cout << ""; #endif #ifdef stdin_path if(not freopen(stdin_path, "r", stdin)) { freopen("CON", "r", stdin); std::cerr << "Failed to open the stdin file\n\n"; } #endif #ifdef LOCAL std::cerr << "----- stderr at LOCAL -----\n\n"; atexit(print_elapsed_time); start_time = std::chrono::system_clock::now(); #else fclose(stderr); #endif } } __setupper; } // namespace execution class myclock_t { std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built; public: explicit myclock_t() : is_built(false) { } void build(int crt_ln, const std::string &crt_func) { is_built = true; last_pt = built_pt = std::chrono::system_clock::now(); last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) { last_pt = std::chrono::system_clock::now(); last_ln = crt_ln, last_func = crt_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n"; } } void get(int crt_ln, const std::string &crt_func) { if(is_built) { std::chrono::system_clock::time_point crt_pt( std::chrono::system_clock::now()); int64_t diff = std::chrono::duration_cast(crt_pt - last_pt) .count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n"; } } }; #ifdef LOCAL myclock_t __myclock; #define build_clock() __myclock.build(__LINE__, __func__) #define set_clock() __myclock.set(__LINE__, __func__) #define get_clock() __myclock.get(__LINE__, __func__) #else #define build_clock() ((void)0) #define set_clock() ((void)0) #define get_clock() ((void)0) #endif namespace std { template void rsort(RAitr __first, RAitr __last) { sort(__first, __last, greater<>()); } template size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template struct hash> { size_t operator()(pair const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template ::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine( tuple_hash_calc::apply(seed, t), get(t)); } }; template struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template struct hash> { size_t operator()(tuple const &t) const { return tuple_hash_calc>::apply(0, t); } }; template istream &operator>>(std::istream &s, pair &p) { return s >> p.first >> p.second; } template ostream &operator<<(std::ostream &s, const pair p) { return s << p.first << " " << p.second; } template istream &operator>>(istream &s, vector &v) { for(T &e : v) { s >> e; } return s; } template ostream &operator<<(ostream &s, const vector &v) { bool is_front = true; for(const T &e : v) { if(not is_front) { s << ' '; } else { is_front = false; } s << e; } return s; } template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { tupleos::apply(s, t); return s << " " << get(t); } }; template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { return s << get<0>(t); } }; template ostream &operator<<(ostream &s, const tuple &t) { return tupleos, tuple_size>::value - 1>::apply( s, t); } template <> ostream &operator<<(ostream &s, const tuple<> &t) { return s; } string revstr(string str) { reverse(str.begin(), str.end()); return str; } } // namespace std #ifdef LOCAL #define dump(...) \ debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \ dump_func(#__VA_ARGS__, __VA_ARGS__) template void dump_func(const char *ptr, const T &x) { debug_stream << '\t'; for(char c = *ptr; c != '\0'; c = *++ptr) { if(c != ' ') debug_stream << c; } debug_stream << " : " << x << '\n'; } template void dump_func(const char *ptr, const T &x, rest_t... rest) { debug_stream << '\t'; for(char c = *ptr; c != ','; c = *++ptr) { if(c != ' ') debug_stream << c; } debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...); } #else #define dump(...) ((void)0) #endif template void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; } template void write_range(P __first, P __second) { for(P i = __first; i != __second; std::cout << (++i == __second ? '\n' : ' ')) { std::cout << *i; } } // substitute y for x. template void subst(T &x, const T &y) { x = y; } // substitue y for x iff x > y. template bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitue y for x iff x < y. template bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; } template constexpr T minf(const T &x, const T &y) { return std::min(x, y); } template constexpr T maxf(const T &x, const T &y) { return std::max(x, y); } // binary search. template int_t bin(int_t ok, int_t ng, const F &f) { while(std::abs(ok - ng) > 1) { int_t mid = (ok + ng) / 2; (f(mid) ? ok : ng) = mid; } return ok; } // be careful that val is type-sensitive. template void init(A (&array)[N], const T &val) { std::fill((T *)array, (T *)(array + N), val); } void reset() { } template void reset(A &array, rest_t... rest) { memset(array, 0, sizeof(array)); reset(rest...); } // a integer uniformly and randomly chosen from the interval [l, r). template int_t rand_int(int_t l, int_t r) { static std::random_device seed_gen; static std::mt19937 engine(seed_gen()); std::uniform_int_distribution unid(l, r - 1); return unid(engine); } // a real number uniformly and randomly chosen from the interval [l, r). template real_t rand_real(real_t l, real_t r) { static std::random_device seed_gen; static std::mt19937 engine(seed_gen()); std::uniform_real_distribution unid(l, r); return unid(engine); } /* The main code follows. */ using namespace std; // using namespace math; signed main() { void __solve(); void __precalc(); unsigned int t = 1; // cin >> t; __precalc(); #ifdef LOCAL t = 3; #endif while(t--) { __solve(); } } void __precalc() { } template class Union_find { std::vector link; std::vector dat; std::vector cyc, clr, flip; size_t comp, isol; bool is_bip; const std::function merge; public: explicit Union_find(int n, const std::function &f) : merge(f) { init(n); } void init(int n) { link.assign(n, -1); dat.resize(n); cyc.assign(n, false); clr.assign(n, false); flip.assign(n, false); comp = isol = n; is_bip = true; } int find(int x) { if(link[x] < 0) return x; int r = find(link[x]); if(flip[link[x]]) { clr[x] = not clr[x]; flip[x] = not flip[x]; } return link[x] = r; } size_t count() const { return comp; } size_t size(int x) { return -link[find(x)]; } size_t isolated() const { return isol; } bool color(int x) { find(x); return clr[x]; } bool is_cyclic(int x) { return cyc[find(x)]; } bool is_same(int x, int y) { return find(x) == find(y); } bool is_bipartite() const { return is_bip; } bool unite(int x, int y) { int _x = find(x); int _y = find(y); bool f = clr[x] == clr[y]; x = _x, y = _y; if(x == y) { if(f) { is_bip = false; } cyc[x] = true; return false; } if(link[x] > link[y]) std::swap(x, y); if(link[y] == -1) { --isol; if(link[x] == -1) { --isol; } } link[x] += link[y]; link[y] = x; merge(dat[x], dat[y]); cyc[x] = cyc[x] || cyc[y]; if(f) { clr[y] = not clr[y]; flip[y] = not flip[y]; } --comp; return true; } T &operator[](int x) { return dat[find(x)]; } }; void __solve() { int n; cin>>n; vector> g(n); vector coef(n); cin>>coef; for(int i=1; i>a>>b; a--,b--; g[a].emplace_back(b); g[b].emplace_back(a); } vector> tr(n); Union_find uf(n, [](int &x,int &y) { x=max(x,y); }); vector p(n); for(int i=0; i ans(n); static tuple que[1<<18]; int l=0,r=1; que[0]={n-1,-1,1}; while(l