#include using namespace std; template struct ChineseRemainderTheorem { inline T modulo(T x, T mod) { if(0 <= x and x < mod) return x; x %= mod; if(x < 0) x += mod; return x; } // gcd(a, b) // ap + bq = gcd(a, b)を満たす(p, q) T exGCD(T a, T b, T &p, T &q) { if(b == 0) { // gcd(a, b)p + 0q = gcd(a, b) p = 1, q = 0; return a; } T ret = exGCD(b, a % b, q, p); q -= a / b * p; return ret; } // x ≡ b(mod m)を満たすx(mod M (= lcm m)) T get(vector &b, vector &mod) { // x ≡ 0(mod 1)は全ての整数 T x = 0, MOD = 1; for(int i = 0; i < (int)b.size(); ++i) { T p, q; T d = exGCD(MOD, mod[i], p, q); // 必要十分性の確認 if((x - b[i]) % d != 0) throw "NOT FOUND"; // nextMOD = MOD * (mod[i] / d)なので部分的にmodが取れてオーバーフロー回避 x = x - modulo((x - b[i]) / d * p, (mod[i] / d)) * MOD; // lcm(M, m) = M * m / gcd(M, m) MOD = MOD * (mod[i] / d); x = modulo(x, MOD); } return modulo(x, MOD); } T Garner(vector &b, vector &mod, T MOD = numeric_limits::max()) { // normalisation(b, mod); vector p(b.size()); for(int i = 0; i < (int)b.size(); ++i) { p[i] = b[i] % mod[i]; for(int j = 0; j < i; ++j) { T inv, _tmp; exGCD(mod[j], mod[i], inv, _tmp); inv = modulo(inv, mod[i]); p[i] = (p[i] - p[j]) * inv; p[i] = modulo(p[i], mod[i]); } } // 復元 T ret = 0; for(int i = 0; i < (int)b.size(); ++i) { T tmp = modulo(p[i], MOD); for(int j = 0; j < i; ++j) { tmp *= mod[j]; tmp %= MOD; } ret += tmp; ret %= MOD; } return ret; } }; int main() { const int n = 3; vector x(n), y(n); for(int i = 0; i < n; ++i) { cin >> x[i] >> y[i]; } ChineseRemainderTheorem crt; try { int64_t ans = crt.get(x, y); if(ans == 0) { ans = 1; for(int i = 0; i < n; ++i) { ans = ans * y[i] / __gcd(ans, y[i]); } } cout << ans << '\n'; } catch(...) { cout << -1 << '\n'; } return 0; }