#include #define rep(i, n) for (int i = 0; i < (n); i++) #define repr(i, n) for (int i = (n) - 1; i >= 0; i--) #define range(a) a.begin(), a.end() using namespace std; using ll = long long; constexpr int MOD = 1000000007; class mint { int n; public: mint(int n_ = 0) : n(n_) {} explicit operator int() { return n; } friend mint operator-(mint a) { return -a.n + MOD * (a.n != 0); } friend mint operator+(mint a, mint b) { int x = a.n + b.n; return x - (x >= MOD) * MOD; } friend mint operator-(mint a, mint b) { int x = a.n - b.n; return x + (x < 0) * MOD; } friend mint operator*(mint a, mint b) { return (long long)a.n * b.n % MOD; } friend mint &operator+=(mint &a, mint b) { return a = a + b; } friend mint &operator-=(mint &a, mint b) { return a = a - b; } friend mint &operator*=(mint &a, mint b) { return a = a * b; } friend bool operator==(mint a, mint b) { return a.n == b.n; } friend bool operator!=(mint a, mint b) { return a.n != b.n; } friend istream &operator>>(istream &i, mint &a) { return i >> a.n; } friend ostream &operator<<(ostream &o, mint a) { return o << a.n; } }; mint operator "" _m(unsigned long long n) { return n; } vector F_{1, 1}, R_{1, 1}, I_{0, 1}; void check_fact(int n) { for (int i = I_.size(); i <= n; i++) { I_.push_back(I_[MOD % i] * (MOD - MOD / i)); F_.push_back(F_[i - 1] * i); R_.push_back(R_[i - 1] * I_[i]); } } mint I(int n) { check_fact(abs(n)); return n >= 0 ? I_[n] : -I_[-n]; } mint F(int n) { check_fact(n); return n < 0 ? 0 : F_[n]; } mint R(int n) { check_fact(n); return n < 0 ? 0 : R_[n]; } mint C(int n, int r) { return F(n) * R(n - r) * R(r); } mint P(int n, int r) { return F(n) * R(n - r); } mint H(int n, int r) { return n == 0 ? (r == 0) : C(n + r - 1, r); } mint modpow(mint a, long long b) { mint res = 1; while (b > 0) { if (b & 1) res *= a; a *= a; b >>= 1; } return res; } int main() { cin.tie(nullptr); ios::sync_with_stdio(false); int a, b, c; cin >> a >> b >> c; int n = a + b + c; mint ans; for (int i = 2; i < n; i++) { mint s = modpow(2, n - 1 - i) * C(n - 1 - i, c - 1); // modpow(2, N - 1 - i - 1) * C(N - 2 - i, C - 2); // modpow(2, N - 1 - i - 2) * C(N - 2 - i, C - 2); // ... // modpow(2, 0) * C(N - 2 - i, C - 2); s += (modpow(2, n - 1 - i) - 1) * C(n - 2 - i, c - 2); ans += s * (C(n - c - 1, b) - C(n - i - c, b)); } cout << ans << endl; }