#include using namespace std; const int mod = 1e9 + 7; using int64 = long long; const int64 infll = (1LL << 62) - 1; const int inf = (1 << 30) - 1; struct IoSetup { IoSetup() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); cerr << fixed << setprecision(10); } } iosetup; template< typename T1, typename T2 > ostream &operator<<(ostream &os, const pair< T1, T2 > &p) { os << p.first << " " << p.second; return os; } template< typename T1, typename T2 > istream &operator>>(istream &is, pair< T1, T2 > &p) { is >> p.first >> p.second; return is; } template< typename T > ostream &operator<<(ostream &os, const vector< T > &v) { for(int i = 0; i < (int) v.size(); i++) { os << v[i] << (i + 1 != v.size() ? " " : ""); } return os; } template< typename T > istream &operator>>(istream &is, vector< T > &v) { for(T &in : v) is >> in; return is; } template< typename T1, typename T2 > inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template< typename T1, typename T2 > inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template< typename T = int64 > vector< T > make_v(size_t a) { return vector< T >(a); } template< typename T, typename... Ts > auto make_v(size_t a, Ts... ts) { return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...)); } template< typename T, typename V > typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) { t = v; } template< typename T, typename V > typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) { for(auto &e : t) fill_v(e, v); } template< typename F > struct FixPoint : F { FixPoint(F &&f) : F(forward< F >(f)) {} template< typename... Args > decltype(auto) operator()(Args &&... args) const { return F::operator()(*this, forward< Args >(args)...); } }; template< typename F > inline decltype(auto) MFP(F &&f) { return FixPoint< F >{forward< F >(f)}; } template< typename OperatorMonoid > struct DuelSegmentTree { using H = function< OperatorMonoid(OperatorMonoid, OperatorMonoid) >; int sz, height; vector< OperatorMonoid > lazy; const H h; const OperatorMonoid OM0; DuelSegmentTree(int n, const H h, const OperatorMonoid OM0) : h(h), OM0(OM0) { sz = 1; height = 0; while(sz < n) sz <<= 1, height++; lazy.assign(2 * sz, OM0); } inline void propagate(int k) { if(lazy[k] != OM0) { lazy[2 * k + 0] = h(lazy[2 * k + 0], lazy[k]); lazy[2 * k + 1] = h(lazy[2 * k + 1], lazy[k]); lazy[k] = OM0; } } inline void thrust(int k) { for(int i = height; i > 0; i--) propagate(k >> i); } void update(int a, int b, const OperatorMonoid &x) { thrust(a += sz); thrust(b += sz - 1); for(int l = a, r = b + 1; l < r; l >>= 1, r >>= 1) { if(l & 1) lazy[l] = h(lazy[l], x), ++l; if(r & 1) --r, lazy[r] = h(lazy[r], x); } } OperatorMonoid operator[](int k) { thrust(k += sz); return lazy[k]; } }; template< typename T, bool isMin > struct ConvexHullTrickWithIndex { struct P { T m, b; int idx; P(T m, T b, int idx) : m(m), b(b), idx(idx) {}; bool operator<(const P &a) { return m != a.m ? m < a.m : b < a.b; } }; deque< P > H; bool empty() const { return H.empty(); } void clear() { H.clear(); } inline int sgn(T x) { return x == 0 ? 0 : (x < 0 ? -1 : 1); } using D = long double; inline bool check(const P &a, const P &b, const P &c) { if(b.b == a.b || c.b == b.b) return sgn(b.m - a.m) * sgn(c.b - b.b) >= sgn(c.m - b.m) * sgn(b.b - a.b); return D(b.m - a.m) * sgn(c.b - b.b) / D(abs(b.b - a.b)) >= D(c.m - b.m) * sgn(b.b - a.b) / D(abs(c.b - b.b)); } void addLine(T m, T b, int idx) { if(!isMin) m *= -1, b *= -1; P line(m, b, idx); if(empty()) { H.emplace_front(line); return; } if(empty() || H.front().m <= m) { if(H.front().m == m) { if(H.front().b <= b) return; H.pop_front(); } while(H.size() >= 2 && check(line, H.front(), H[1])) H.pop_front(); H.emplace_front(line); } else { assert(m <= H.back().m); if(H.back().m == m) { if(H.back().b <= b) return; H.pop_back(); } while(H.size() >= 2 && check(H[H.size() - 2], H.back(), line)) H.pop_back(); H.emplace_back(line); } } inline pair< T, int > getY(const P &a, const T &x) { return make_pair(a.m * x + a.b, a.idx); } pair< T, int > query(T x) { assert(!empty()); int l = -1, r = H.size() - 1; while(l + 1 < r) { int m = (l + r) >> 1; if(getY(H[m], x) >= getY(H[m + 1], x)) l = m; else r = m; } if(isMin) return getY(H[r], x); return make_pair(-getY(H[r], x).first, H[r].idx); } pair< T, int > queryMonotoneInc(T x) { assert(!empty()); while(H.size() >= 2 && getY(H.front(), x) >= getY(H[1], x)) H.pop_front(); if(isMin) return getY(H.front(), x); return make_pair(-getY(H.front(), x).first, H.front().idx); } pair< T, int > queryMonotoneDec(T x) { assert(!empty()); while(H.size() >= 2 && getY(H.back(), x) >= getY(H[H.size() - 2], x)) H.pop_back(); if(isMin) return getY(H.back(), x); return make_pair(-getY(H.back(), x).first, H.back().idx); } }; int main() { int N; cin >> N; vector< int > A(N); cin >> A; auto beet = [&]() { auto f = [](int64 a, int64 b) { return min(a, b); }; DuelSegmentTree< int64 > seg(N, f, infll); vector< int64 > S(N + 1); for(int i = 1; i <= N; i++) S[i] = S[i - 1] + A[i - 1]; ConvexHullTrickWithIndex< int64, true > cht; for(int64 i = 0; i <= N; i++) { if(i > 0) { auto ret = cht.queryMonotoneInc(i); seg.update(ret.second, i, ret.first + i * i - S[i]); } cht.addLine(-2 * i, i * i + S[i], i); } vector< int64 > ret(N); for(int i = 0; i < N; i++) ret[i] = seg[i]; return ret; }; auto v = beet(); reverse(begin(A), end(A)); auto s = beet(); reverse(begin(s), end(s)); for(int i = 0; i < N; i++) { cout << min(v[i], s[i]) << endl; } }