#include using namespace std; using ll = long long; // #define int ll using PII = pair; #define FOR(i, a, n) for (ll i = (ll)a; i < (ll)n; ++i) #define REP(i, n) FOR(i, 0, n) #define ALL(x) x.begin(), x.end() template T &chmin(T &a, const T &b) { return a = min(a, b); } template T &chmax(T &a, const T &b) { return a = max(a, b); } template bool IN(T a, T b, T x) { return a<=x&&x T ceil(T a, T b) { return a/b + !!(a%b); } template vector make_v(size_t a) { return vector(a); } template auto make_v(size_t a,Ts... ts) { return vector(ts...))>(a,make_v(ts...)); } template typename enable_if::value==0>::type fill_v(T &t, const V &v) { t=v; } template typename enable_if::value!=0>::type fill_v(T &t, const V &v ) { for(auto &e:t) fill_v(e,v); } template ostream &operator <<(ostream& out,const pair& a){ out<<'('< ostream &operator <<(ostream& out,const vector& a){ out<<'['; for(T i: a) {out<> g; vector vid, // HL分解後のグラフでのid head, // 頂点が属するheavy-pathのheadのid sub, // 部分木のサイズ hvy, // heavy-path上での次の頂点のid par, // 親のid depth, // 深さ inv, // HL分解前のグラフのid(添え字が分解後のid) type, // 森をHL分解するときの属する木の番号 ps, // 行きがけ順 pt; // 帰りがけ順 // 根rtからdfsして部分木の大きさ、heavy-edgeの判定などをする void dfs1(ll rt) { stack st; par[rt] = -1; depth[rt] = 0; st.emplace(rt, 0); while(st.size()) { ll v = st.top().first; ll &i = st.top().second; if(i < (ll)g[v].size()) { ll u = g[v][i++]; if(u == par[v]) continue; par[u] = v; depth[u] = depth[v]+1; st.emplace(u, 0); } else { st.pop(); for(ll &u: g[v]){ if(u == par[v]) swap(u, g[v].back()); if(u == par[v]) continue; sub[v] += sub[u]; if(sub[u]>sub[g[v].front()]) swap(u, g[v].front()); } } } } // 根r、c番目の木についてchainについての情報をまとめる void dfs2(ll r, ll c) { using T = tuple; stack st; st.emplace(r,r,0); while(!st.empty()) { ll v,h; tie(v,h,ignore)=st.top(); ll &i=get<2>(st.top()); if(!i) { type[v]=c; ps[v]=vid[v]=pos++; inv[vid[v]]=v; head[v]=h; hvy[v]=(g[v].empty()?-1:g[v][0]); if(hvy[v]==par[v]) hvy[v]=-1; } if(i<(ll)g[v].size()) { ll u=g[v][i++]; if(u==par[v]) continue; st.emplace(u,(hvy[v]==u?h:u),0); } else { st.pop(); pt[v]=pos; } } } HLDecomposition(){} HLDecomposition(ll sz): n(sz), pos(0), g(n), vid(n,-1), head(n), sub(n,1), hvy(n,-1), par(n), depth(n), inv(n), type(n), ps(n), pt(n) {} void add_edge(ll u, ll v) { g[u].push_back(v); g[v].push_back(u); } void build(vector rs=vector(1,0)) { ll c=0; for(ll r: rs) { dfs1(r); dfs2(r, c++); } } // 頂点に対する処理 [u,v] 開区間なので注意!!! void for_each(ll u, ll v, const function& f) { while(1){ if(vid[u]>vid[v]) swap(u,v); // [max(vid[head[v]],vid[u]), vid[v]] の区間についての操作を行う f(max(vid[head[v]], vid[u]), vid[v]); if(head[u]!=head[v]) v = par[head[v]]; else break; } } // 辺に対する処理 [u,v] 開区間なので注意!!! void for_each_edge(ll u, ll v, const function& f) { while(1) { if(vid[u]>vid[v]) swap(u,v); if(head[u]!=head[v]) { f(vid[head[v]], vid[v]); v = par[head[v]]; } else { if(u!=v) f(vid[u]+1, vid[v]); break; } } } ll lca(ll u, ll v) { while(1) { if(vid[u]>vid[v]) swap(u,v); if(head[u]==head[v]) return u; v = par[head[v]]; } } ll distance(ll u, ll v) { return depth[u] + depth[v] - 2*depth[lca(u,v)]; } }; /* パスu-vの頂点属性クエリ → hld.for_each(u, v, f) パスu-vの辺属性クエリ → hld.for_each_edge(u, v, f) 頂点vの部分木に対するクエリ → 区間[hld.vid[u]+1, hld.vid[u] + hld.sub[u]) に操作 */ template struct lazysegtree { using T = typename Monoid::T; using E = typename Monoid::E; int n, height; vector dat; vector lazy; lazysegtree() {} lazysegtree(int n_) { n = 1, height = 0; while(n < n_) { n *= 2; height++; } dat.assign(n*2, Monoid::dt()); lazy.assign(n*2, Monoid::de()); } void build(vector v) { REP(i, v.size()) dat[i+n] = v[i]; for(int i=n-1; i>0; --i) dat[i] = Monoid::f(dat[i*2], dat[i*2+1]); } inline T reflect(int k) { return lazy[k]==Monoid::de()?dat[k]:Monoid::g(dat[k], lazy[k]); } inline void eval(int k) { if(lazy[k] == Monoid::de()) return; lazy[2*k] = Monoid::h(lazy[k*2], lazy[k]); lazy[2*k+1] = Monoid::h(lazy[k*2+1], lazy[k]); dat[k] = reflect(k); lazy[k] = Monoid::de(); } inline void thrust(int k) { for(int i=height;i;--i) eval(k>>i); } inline void recalc(int k) { while(k>>=1) dat[k] = Monoid::f(reflect(k*2), reflect(k*2+1)); } void update(int a, int b, E x) { thrust(a+=n); thrust(b+=n-1); for(int l=a, r=b+1; l>=1,r>>=1) { if(l&1) lazy[l] = Monoid::h(lazy[l], x), ++l; if(r&1) --r, lazy[r] = Monoid::h(lazy[r], x); } recalc(a); recalc(b); } T query(int a, int b) { thrust(a+=n); thrust(b+=n-1); T vl=Monoid::dt(), vr=Monoid::dt(); for(int l=a, r=b+1; l>=1,r>>=1) { if(l&1) vl=Monoid::f(vl, reflect(l++)); if(r&1) vr=Monoid::f(reflect(--r), vr); } return Monoid::f(vl, vr); } friend ostream &operator <<(ostream& out,const lazysegtree& seg) { out << "---------------------" << endl; int cnt = 1; for(int i=1; i<=seg.n; i*=2) { REP(j, i) { out << "(" << seg.dat[cnt] << "," << seg.lazy[cnt] << ") "; cnt++; } out << endl; } out << "---------------------" << endl; return out; } }; struct node { ll sum, max, min, len; node() : sum(0), max(-LLINF), min(LLINF), len(0) {} node(ll a, ll b, ll c, ll d) : sum(a), max(b), min(c), len(d) {} }; struct linear_exp { using T = node; using E = PII; static T dt() { return node(); } static constexpr E de() { return PII(1, 0); } static T f(const T &a, const T &b) { node ret; ret.sum = a.sum + b.sum; ret.min = min(a.min, b.min); ret.max = max(a.max, b.max); ret.len = a.len + b.len; return ret; } static T g(const T &a, const E &b) { node ret; ret.sum = b.first*a.sum+b.second*a.len; ret.min = b.first*a.min+b.second; ret.max = b.first*a.max+b.second; ret.len = a.len; return ret; } static E h(const E &a, const E &b) { return PII(b.first*a.first, b.first*a.second+b.second); } }; signed main(void) { cin.tie(0); ios::sync_with_stdio(false); ll n; cin >> n; HLDecomposition hld(n); vector a(n), b(n), c(n); REP(i, n-1) { cin >> a[i] >> b[i] >> c[i]; hld.add_edge(a[i], b[i]); } hld.build(); lazysegtree seg(n); seg.build(vector(n, node(0, 0, 0, 1))); REP(i, n-1) { hld.for_each_edge(a[i], b[i], [&](ll u, ll v){ seg.update(u, v+1, PII(1, c[i])); }); } ll q; cin >> q; while(q--) { ll type; cin >> type; if(type == 1) { ll u, x; cin >> u >> x; seg.update(hld.vid[u]+1, hld.vid[u] + hld.sub[u], PII(1, x)); } else { ll u; cin >> u; ll ans = 0; hld.for_each_edge(0, u, [&](ll p, ll q){ ans += seg.query(p, q+1).sum; }); cout << ans << endl; } } return 0; }