#include #include #include #include #include #define _USE_MATH_DEFINES #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() const int INF = 0x3f3f3f3f; const long long LINF = 0x3f3f3f3f3f3f3f3fLL; const double EPS = 1e-8; const int MOD = 1000000007; // 998244353; const int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; /*-------------------------------------------------*/ using CostType = long long; struct Edge { int src, dst; CostType cost; Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {} inline bool operator<(const Edge &rhs) const { return cost != rhs.cost ? cost < rhs.cost : dst != rhs.dst ? dst < rhs.dst : src < rhs.src; } inline bool operator<=(const Edge &rhs) const { return cost <= rhs.cost; } inline bool operator>(const Edge &rhs) const { return cost != rhs.cost ? cost > rhs.cost : dst != rhs.dst ? dst > rhs.dst : src > rhs.src; } inline bool operator>=(const Edge &rhs) const { return cost >= rhs.cost; } }; struct EulerTour { vector tour, left, right, down, up, depth; vector cost; EulerTour(const vector > &graph, int root = 0) : graph(graph) { int n = graph.size(); left.resize(n); right.resize(n); down.assign(n, -1); up.assign(n, (n - 1) << 1); dfs(-1, root, 0); } void v_update(int ver, const function f) { f(left[ver], right[ver] + 1); } template T v_query(int ver, const function f) { return f(left[ver], right[ver] + 1); } void e_update(int u, int v, const function f) { f(down[u] + 1, down[v] + 1); } template T e_query(int u, int v, const function f) { return f(down[u] + 1, down[v] + 1); } void subtree_e_update(int ver, const function f) { f(down[ver] + 1, up[ver]); } template T subtree_e_query(int ver, const function f) { return f(down[ver] + 1, up[ver]); } private: const vector > graph; void dfs(int par, int ver, int now_depth) { left[ver] = tour.size(); tour.emplace_back(ver); depth.emplace_back(now_depth); for (const Edge &e : graph[ver]) if (e.dst != par) { down[e.dst] = cost.size(); cost.emplace_back(e.cost); dfs(ver, e.dst, now_depth + 1); tour.emplace_back(ver); depth.emplace_back(now_depth); up[e.dst] = cost.size(); cost.emplace_back(-e.cost); } right[ver] = tour.size() - 1; } }; struct LCA { vector depth; vector dist; LCA(const vector > &graph) : graph(graph) { n = graph.size(); depth.resize(n); dist.resize(n); while ((1 << table_h) <= n) ++table_h; parent.resize(table_h, vector(n)); } void build(int root = 0) { dfs(-1, root, 0, 0); for (int i = 0; i + 1 < table_h; ++i) REP(ver, n) { parent[i + 1][ver] = (parent[i][ver] == -1 ? -1 : parent[i][parent[i][ver]]); } } int query(int u, int v) { if (depth[u] > depth[v]) swap(u, v); REP(i, table_h) { if ((depth[v] - depth[u]) >> i & 1) v = parent[i][v]; } if (u == v) return u; for (int i = table_h - 1; i >= 0; --i) { if (parent[i][u] != parent[i][v]) { u = parent[i][u]; v = parent[i][v]; } } return parent[0][u]; } CostType distance(int u, int v) { return dist[u] + dist[v] - dist[query(u, v)] * 2; } private: int n, table_h = 1; vector > graph; vector > parent; void dfs(int par, int ver, int now_depth, CostType now_dist) { depth[ver] = now_depth; dist[ver] = now_dist; parent[0][ver] = par; for (const Edge &e : graph[ver]) { if (e.dst != par) dfs(ver, e.dst, now_depth + 1, now_dist + e.cost); } } }; int main() { cin.tie(nullptr); ios::sync_with_stdio(false); // freopen("input.txt", "r", stdin); int n; cin >> n; vector > graph(n); REP(_, n - 1) { int u, v, w; cin >> u >> v >> w; graph[u].emplace_back(u, v, w); graph[v].emplace_back(v, u, w); } EulerTour et(graph); LCA lca(graph); lca.build(); int q; cin >> q; while (q--) { int k; cin >> k; vector > x(k); REP(i, k) { cin >> x[i].second; x[i].first = et.left[x[i].second]; } if (k == 1) { cout << 0 << '\n'; continue; } sort(ALL(x)); long long ans = 0; FOR(i, 1, k) ans += lca.distance(x[i - 1].second, x[i].second); ans += lca.distance(x[0].second, x[k - 1].second); cout << ans / 2 << '\n'; } return 0; }