#ifdef stderr_path #define LOCAL #endif #ifdef LOCAL #define _GLIBCXX_DEBUG #else #pragma GCC optimize("Ofast") #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // #define NDEBUG #define debug_stream std::cerr #define iostream_untie true #define __precision__ 10 #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #define __odd(n) ((n)&1) #define __even(n) (not __odd(n)) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(n) #define __clz64(n) __builtin_clzll(n) #define __ctz32(n) __builtin_ctz(n) #define __ctz64(n) __builtin_ctzll(n) using i64 = int_fast64_t; using pii = std::pair; using pll = std::pair; template using heap = std::priority_queue; template using minheap = std::priority_queue, std::greater>; template constexpr T inf = std::numeric_limits::max() / T(2) - T(1123456); namespace execution { std::chrono::system_clock::time_point start_time, end_time; void print_elapsed_time() { end_time = std::chrono::system_clock::now(); std::cerr << "\n----- Exec time : "; std::cerr << std::chrono::duration_cast( end_time - start_time) .count(); std::cerr << " ms -----\n\n"; } struct setupper { setupper() { if(iostream_untie) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } std::cout << std::fixed << std::setprecision(__precision__); #ifdef stderr_path if(freopen(stderr_path, "a", stderr)) { std::cerr << std::fixed << std::setprecision(__precision__); } #endif #ifdef stdout_path if(not freopen(stdout_path, "w", stdout)) { freopen("CON", "w", stdout); std::cerr << "Failed to open the stdout file\n\n"; } std::cout << ""; #endif #ifdef stdin_path if(not freopen(stdin_path, "r", stdin)) { freopen("CON", "r", stdin); std::cerr << "Failed to open the stdin file\n\n"; } #endif #ifdef LOCAL std::cerr << "----- stderr at LOCAL -----\n\n"; atexit(print_elapsed_time); start_time = std::chrono::system_clock::now(); #else fclose(stderr); #endif } } __setupper; } // namespace execution class myclock_t { std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built; public: explicit myclock_t() : is_built(false) { } void build(int crt_ln, const std::string &crt_func) { is_built = true; last_pt = built_pt = std::chrono::system_clock::now(); last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) { last_pt = std::chrono::system_clock::now(); last_ln = crt_ln, last_func = crt_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n"; } } void get(int crt_ln, const std::string &crt_func) { if(is_built) { std::chrono::system_clock::time_point crt_pt( std::chrono::system_clock::now()); int64_t diff = std::chrono::duration_cast(crt_pt - last_pt) .count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n"; } } }; #ifdef LOCAL myclock_t __myclock; #define build_clock() __myclock.build(__LINE__, __func__) #define set_clock() __myclock.set(__LINE__, __func__) #define get_clock() __myclock.get(__LINE__, __func__) #else #define build_clock() ((void)0) #define set_clock() ((void)0) #define get_clock() ((void)0) #endif namespace std { template void rsort(RAitr __first, RAitr __last) { sort(__first, __last, greater<>()); } template size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template struct hash> { size_t operator()(pair const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template ::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine( tuple_hash_calc::apply(seed, t), get(t)); } }; template struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template struct hash> { size_t operator()(tuple const &t) const { return tuple_hash_calc>::apply(0, t); } }; template istream &operator>>(std::istream &s, pair &p) { return s >> p.first >> p.second; } template ostream &operator<<(std::ostream &s, const pair p) { return s << p.first << " " << p.second; } template istream &operator>>(istream &s, vector &v) { for(T &e : v) { s >> e; } return s; } template ostream &operator<<(ostream &s, const vector &v) { bool is_front = true; for(const T &e : v) { if(not is_front) { s << ' '; } else { is_front = false; } s << e; } return s; } template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { tupleos::apply(s, t); return s << " " << get(t); } }; template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { return s << get<0>(t); } }; template ostream &operator<<(ostream &s, const tuple &t) { return tupleos, tuple_size>::value - 1>::apply( s, t); } template <> ostream &operator<<(ostream &s, const tuple<> &t) { return s; } string revstr(string str) { reverse(str.begin(), str.end()); return str; } } // namespace std #ifdef LOCAL #define dump(...) \ debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \ dump_func(#__VA_ARGS__, __VA_ARGS__) template void dump_func(const char *ptr, const T &x) { debug_stream << '\t'; for(char c = *ptr; c != '\0'; c = *++ptr) { if(c != ' ') debug_stream << c; } debug_stream << " : " << x << '\n'; } template void dump_func(const char *ptr, const T &x, rest_t... rest) { debug_stream << '\t'; for(char c = *ptr; c != ','; c = *++ptr) { if(c != ' ') debug_stream << c; } debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...); } #else #define dump(...) ((void)0) #endif template void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; } template void write_range(P __first, P __second) { for(P i = __first; i != __second; std::cout << (++i == __second ? '\n' : ' ')) { std::cout << *i; } } // substitute y for x. template void subst(T &x, const T &y) { x = y; } // substitue y for x iff x > y. template bool chmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitue y for x iff x < y. template bool chmax(T &x, const T &y) { return x < y ? x = y, true : false; } template constexpr T minf(const T &x, const T &y) { return std::min(x, y); } template constexpr T maxf(const T &x, const T &y) { return std::max(x, y); } // binary search. template int_t bin(int_t ok, int_t ng, const F &f) { while(std::abs(ok - ng) > 1) { int_t mid = (ok + ng) / 2; (f(mid) ? ok : ng) = mid; } return ok; } // be careful that val is type-sensitive. template void init(A (&array)[N], const T &val) { std::fill((T *)array, (T *)(array + N), val); } void reset() { } template void reset(A &array, rest_t... rest) { memset(array, 0, sizeof(array)); reset(rest...); } // a integer uniformly and randomly chosen from the interval [l, r). template int_t rand_int(int_t l, int_t r) { static std::random_device seed_gen; static std::mt19937 engine(seed_gen()); std::uniform_int_distribution unid(l, r - 1); return unid(engine); } // a real number uniformly and randomly chosen from the interval [l, r). template real_t rand_real(real_t l, real_t r) { static std::random_device seed_gen; static std::mt19937 engine(seed_gen()); std::uniform_real_distribution unid(l, r); return unid(engine); } /* The main code follows. */ template class Lazy_segment_tree { std::vector data; std::vector lazy; std::vector lazyflag; public: const size_t n, N; using opr_t = std::function; using lazy_opr_t = std::function; using update_opr_t = std::function; const opr_t opr; const lazy_opr_t lazy_opr; const update_opr_t update_opr; const Monoid identity; const act_t lazy_identity; explicit Lazy_segment_tree(size_t _n, const Monoid &_identity, const act_t &_lazy_identity, const opr_t &_opr, const lazy_opr_t &_lazy_opr, const update_opr_t &_update_opr) : n(_n), N(n > 1 ? 1 << (32 - __builtin_clz(n - 1)) : 1), opr(_opr), lazy_opr(_lazy_opr), update_opr(_update_opr), identity(_identity), lazy_identity(_lazy_identity) { data.assign(N << 1, identity); lazy.assign(N << 1, lazy_identity); lazyflag.assign(N << 1, false); } Monoid operator[](size_t i) { return query(i, i + 1); } template void build(P s, P t) { for(size_t i = N; s != t; ++s, ++i) data[i] = *s; for(size_t i = N - 1; i; --i) data[i] = opr(data[left(i)], data[right(i)]); } template void build(A &v) { build(std::begin(v), std::end(v)); } void init(const Monoid &x) { for(size_t i = 0; i < N; ++i) data[i + N] = x; for(size_t i = N - 1; i; --i) data[i] = opr(data[left(i)], data[right(i)]); } void update(size_t a, const act_t &actor) { update(a, a + 1, actor); } void update(size_t a, size_t b, const act_t &actor) { update(a, b, actor, 1, 0, N); } Monoid query(size_t a, size_t b) { return query(a, b, 1, 0, N); } size_t right_bound(size_t idx, const std::function &f) { assert(idx < n); size_t ret = idx; Monoid now = identity; right_bound(idx, f, 1, 0, N, now, ret); return std::min(ret, n); } size_t left_bound(size_t idx, const std::function &f) { assert(idx <= n); size_t ret = idx; Monoid now = identity; left_bound(idx, f, 1, 0, N, now, ret); return ret; } private: constexpr size_t left(const size_t k) { return k * 2; } constexpr size_t right(const size_t k) { return left(k) ^ 1; } constexpr size_t parent(const size_t k) { return k >> 1; } constexpr size_t sibling(const size_t k) { return k ^ 1; } void eval(size_t k, size_t l, size_t r) { if(!lazyflag[k]) return; update_opr(data[k], lazy[k], r - l); if(r - l > 1) { lazy_opr(lazy[left(k)], lazy[k], (r - l) / 2); lazy_opr(lazy[right(k)], lazy[k], (r - l) / 2); lazyflag[left(k)] = lazyflag[right(k)] = true; } lazy[k] = lazy_identity; lazyflag[k] = false; } void update(size_t a, size_t b, const act_t &actor, size_t k, size_t l, size_t r) { eval(k, l, r); if(b <= l || r <= a) return; if(a <= l && r <= b) { lazy_opr(lazy[k], actor, r - l); lazyflag[k] = true; eval(k, l, r); } else { update(a, b, actor, left(k), l, (l + r) / 2); update(a, b, actor, right(k), (l + r) / 2, r); data[k] = opr(data[left(k)], data[right(k)]); } } Monoid query(size_t a, size_t b, size_t k, size_t l, size_t r) { if(b <= l || r <= a) return identity; eval(k, l, r); if(a <= l && r <= b) return data[k]; return opr(query(a, b, left(k), l, (l + r) / 2), query(a, b, right(k), (l + r) / 2, r)); } void right_bound(size_t idx, const std::function &f, size_t k, size_t l, size_t r, Monoid &now, size_t &pos) { if(idx >= r || l > pos) return; eval(k, l, r); const size_t mid = (l + r) / 2; if(l >= idx) { Monoid nxt = opr(now, data[k]); if(f(nxt)) { pos = r; now = nxt; return; } } if(r - l > 1) { right_bound(idx, f, left(k), l, mid, now, pos); right_bound(idx, f, right(k), mid, r, now, pos); } } void left_bound(size_t idx, const std::function &f, size_t k, size_t l, size_t r, Monoid &now, size_t &pos) { if(idx <= l || r < pos) return; eval(k, l, r); const size_t mid = (l + r) / 2; if(r <= idx) { Monoid nxt = opr(data[k], now); if(f(nxt)) { pos = l; now = nxt; return; } } if(r - l > 1) { left_bound(idx, f, right(k), mid, r, now, pos); left_bound(idx, f, left(k), l, mid, now, pos); } } }; using namespace std; // using namespace math; signed main() { void __solve(); void __precalc(); unsigned int t = 1; // cin >> t; // __precalc(); #ifdef LOCAL t = 1; #endif while(t--) { __solve(); } } void __solve() { int n; cin >> n; vector> g(n); for(int i = 0; i < n - 1; ++i) { int a, b; cin >> a >> b; g[a].emplace_back(b); g[b].emplace_back(a); } const int root = 0; vector par(n); vector l(n), r(n), k(n); { int que[1 << 17]; par[root] = -1; que[0] = root; k[root] = 0; for(int cnt = 1, s = 0, t = 1; s < t;) { int v = que[s++]; l[k[v]] = cnt; for(int u : g[v]) { if(par[v] != u) { que[t++] = u; par[u] = v; k[u] = cnt; cnt++; } } r[k[v]] = cnt; } } dump(l, r, k); Lazy_segment_tree lsg(n, 0, 0, plus(), [](i64 &x, i64 y, size_t w) { x = y; }, [](i64 &x, i64 y, size_t w) { x = y * w; }); { vector iniv(n); for(int i = 0; i < n; ++i) { int a; cin >> a; iniv[k[i]] = a; } lsg.build(iniv); } auto self = [&](int v) { i64 ret = lsg[k[v]]; lsg.update(k[v], 0); return ret; }; auto chi = [&](int v) { i64 ret = lsg.query(l[k[v]], r[k[v]]); lsg.update(l[k[v]], r[k[v]], 0); return ret; }; auto cchi = [&](int v) -> i64 { if(l[v] == r[v]) { return 0; } int ll = l[l[v]]; int rr = r[r[v] - 1]; i64 ret = lsg.query(ll, rr); lsg.update(ll, rr, 0); return ret; }; int Q; cin >> Q; for(int q = 0; q < Q; ++q) { int x; cin >> x; i64 ans = self(x); if(~par[x]) { ans += chi(par[x]); ans += self(par[x]); if(~par[par[x]]) { ans += self(par[par[x]]); } } ans += chi(x); ans += cchi(x); lsg.update(k[x], ans); cout << ans << "\n"; } }