#include using namespace std::literals::string_literals; using i64 = std::int_fast64_t; using std::cout; using std::endl; using std::cin; template std::vector make_v(size_t a){return std::vector(a);} template auto make_v(size_t a,Ts... ts){ return std::vector(ts...))>(a,make_v(ts...)); } template class segment_tree { using value_type = Monoid; using size_type = size_t; using binary_function = std::function; using checker = std::function; const size_type size_; size_type height_; const value_type id; const binary_function bi_func; std::vector data; private: const size_type get_height(const size_type& size) const { size_type height = 1; while(1 << height < size) height++; return height; } const size_type base_size() const { return 1 << height_; } void meld(const size_type& index) { data[index] = bi_func(data[index << 1 ^ 0], data[index << 1 ^ 1]); } public: segment_tree(const size_type& size, const binary_function& bi_func, const value_type& id) : size_(size), bi_func(bi_func), id(id) { height_ = get_height(size); data.assign(base_size() << 1, id); } value_type fold(size_type left, size_type right) { value_type l_value = id, r_value = id; for(left += base_size(), right += base_size(); left < right; left >>= 1, right >>= 1) { if(left & 1) l_value = bi_func(l_value, data[left++]); if(right & 1) r_value = bi_func(data[--right], r_value); } return bi_func(std::move(l_value), std::move(r_value)); } void update(size_type index, const value_type& value) { index += base_size(); data[index] = bi_func(data[index], value); while(index >>= 1) meld(index); } void change(size_type index, const value_type& value) { index += base_size(); data[index] = value; while(index >>= 1) meld(index); } const size_type search(const size_type & left, const checker & check) { value_type val = id; size_t base_size_ = base_size(); auto find = [&](auto&& find, size_type k, size_type l, size_type r) -> int { if(l + 1 == r) { val = bi_func(val, data[k]); return (check(val) ? k - base_size_ : -1); } const size_type mid = (l + r) >> 1; if(mid <= left) return find(find, k << 1 ^ 1, mid, r); if(left <= l and !check(bi_func(val, data[k]))) { val = bi_func(val, data[k]); return -1; } const int left_ret = find(find, k << 1 ^ 0, l, mid); if(left_ret == -1) return find(find, k << 1 ^ 1, mid, r); return left_ret; }; return find(find, 1, 0, base_size_); } value_type operator[](const size_type& index) const { return data[index + base_size()]; } const size_type size() const { return size_; } const bool empty() const { return data.empty(); } }; struct node { // 区間の端 i64 l, r; // 区間が sorted かどうか bool sorted; node(i64 v) : l(v), r(v), sorted(true) {} node(i64 l, i64 r, bool sorted) : l(l), r(r), sorted(sorted) {} }; int main() { // 広義単調増加用 auto f1 = [](node a, node b) { return node(a.l, b.r, (a.sorted and b.sorted and a.r <= b.l)); // 両方の区間が sorted で,なおかつ接続点でも sorted ならマージしても sorted }; // 広義単調減少用 auto f2 = [](node a, node b) { return node(a.l, b.r, (a.sorted and b.sorted and a.r >= b.l)); }; int n; scanf("%d", &n); segment_tree A(n, f1, node(1LL << 60, -(1LL << 60), true)); segment_tree B(n, f2, node(-(1LL << 60), 1LL << 60, true)); for(int i = 0; i < n; i++) { i64 a; scanf("%lld", &a); A.change(i, node(a)); B.change(i, node(a)); } int q; scanf("%d", &q); while(q--) { int l, r; scanf("%d%d", &l, &r); printf("%d %d\n", A.fold(l, r + 1).sorted, B.fold(l, r + 1).sorted); } return 0; }