#include using namespace std; using lint = long long int; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((lint)(x).size()) #define POW2(n) (1LL << (n)) #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template void ndarray(vector &vec, int len) { vec.resize(len); } template void ndarray(vector &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); } template bool mmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template bool mmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } template pair operator+(const pair &l, const pair &r) { return make_pair(l.first + r.first, l.second + r.second); } template pair operator-(const pair &l, const pair &r) { return make_pair(l.first - r.first, l.second - r.second); } template istream &operator>>(istream &is, vector &vec){ for (auto &v : vec) is >> v; return is; } ///// This part below is only for debug, not used ///// template ostream &operator<<(ostream &os, const vector &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; } template ostream &operator<<(ostream &os, const deque &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; } template ostream &operator<<(ostream &os, const set &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_set &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const multiset &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_multiset &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const pair &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; } template ostream &operator<<(ostream &os, const map &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_map &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl; ///// END ///// /* #include #include #include using namespace __gnu_pbds; // find_by_order(), order_of_key() template using pbds_set = tree, rb_tree_tag, tree_order_statistics_node_update>; template using pbds_map = tree, rb_tree_tag, tree_order_statistics_node_update>; */ struct mpint { static const int D = 9, DD = 1000000000; int sign; vector data; mpint() : sign(1), data(0) {} mpint(const string &S) { str2num(S); } mpint(lint v) { *this = v; } void str2num(const string &S) { int buf = 0, ten = 1; sign = 1, data.clear(); IREP(i, S.size()) { if (S[i] == '-') sign *= -1; else if (S[i] - '0' >= 0 and S[i] - '0' <= 10) { buf += (S[i] - '0') * ten; ten *= 10; if (ten == DD) data.push_back(buf), buf = 0, ten = 1; } } if (buf) data.push_back(buf); pop_zero(); } void pop_zero() { while (!data.empty() and !data.back()) data.pop_back(); if (data.empty()) sign = 1; } mpint abs() const { mpint ret = *this; ret.sign = 1; return ret; } void operator=(const mpint &x) { sign = x.sign, data = x.data; } void operator=(lint x) { sign = (x < 0 ? -1 : 1), x = std::abs(x); while(x) data.push_back(x % DD), x /= DD; } mpint operator-() const { mpint ret = *this; if (ret.data.size()) ret.sign *= -1; return ret; } mpint operator+(const mpint &x) const { if (sign == x.sign) { mpint ret = *this; int now = 0, moveup = 0; while (now < (int)x.data.size() or moveup) { if ((int)ret.data.size() == now) ret.data.push_back(0); ret.data[now] += moveup + (now < (int)x.data.size() ? x.data[now] : 0); moveup = (ret.data[now] >= DD); if (moveup) ret.data[now] -= DD; now++; } return ret; } else return *this - (-x); } mpint operator-(const mpint &x) const { if (sign == x.sign) { if (abs() >= x.abs()) { mpint ret = *this; IREP(i, x.data.size()) { ret.data[i] -= x.data[i]; if (ret.data[i] < 0) ret.data[i + 1]--, ret.data[i] += DD; } ret.pop_zero(); return ret; } else return -(x - *this); } else return *this + (-x); } bool operator<(const mpint &r) const { if (sign != r.sign) return sign < r.sign; if (data.size() != r.data.size()) return data.size() * sign < r.data.size() * r.sign; IREP(i, data.size()) if (data[i] != r.data[i]) return data[i] * sign < r.data[i] * r.sign; return false; } bool operator>(const mpint &r) const { return r < *this; } bool operator<=(const mpint &r) const { return !(r < *this); } bool operator>=(const mpint &r) const { return !(*this < r); } bool operator==(const mpint &r) const { return sign == r.sign and data == r.data; } bool operator!=(const mpint &r) const { return !(*this == r); } void operator*=(int x) { if (x < 0) sign *= -1, x *= -1; int now = 0; lint moveup = 0; while (now < (int)data.size() or moveup) { if (now == (int)data.size()) data.push_back(0); moveup = (lint)data[now] * x + moveup; data[now] = moveup % DD, moveup /= DD; now++; } pop_zero(); } mpint operator*(int x) const { mpint ret = *this; ret *= x; return ret; } void operator/=(int x) { if (x < 0) sign *= -1, x *= -1; lint buff = 0; IREP(i, data.size()) { buff = data[i] + buff * DD; data[i] = buff / x; buff %= x; } pop_zero(); } mpint operator/(int x) const { mpint ret = *this; ret /= x; return ret; } static pair div(const mpint &a1, const mpint &b1) { int n = DD / (b1.data.back() + 1); mpint a = a1.abs() * n, b = b1.abs() * n, q, r; q.data.resize(a.data.size()); IREP(i, a.data.size()) { r = r * DD + a.data[i]; int s1 = r.data.size() <= b.data.size() ? 0 : r.data[b.data.size()]; int s2 = r.data.size() <= b.data.size() - 1 ? 0 : r.data[b.data.size() - 1]; int d = ((lint)DD * s1 + s2) / b.data.back(); r -= b * d; while (r < 0) r += b, --d; q.data[i] = d; } q.sign = a1.sign * b1.sign, r.sign = a1.sign; q.pop_zero(), r.pop_zero(); return make_pair(q, r / n); } static mpint shiftd(const mpint &x, int d) { mpint ret; ret.sign = x.sign, ret.data.assign(x.data.size() + d, 0); REP(i, x.data.size()) ret.data[i + d] = x.data[i]; ret.pop_zero(); return ret; } mpint operator*(const mpint &x) const { mpint ret; REP(i, data.size()) ret += shiftd(x * data[i], i); ret.sign *= sign; ret.pop_zero(); return ret; } mpint operator/(const mpint &x) const { return div(*this, x).first; } mpint operator%(const mpint &x) const { return div(*this, x).second; } void operator+=(const mpint &x) { *this = *this + x; } void operator-=(const mpint &x) { *this = *this - x; } void operator*=(const mpint &x) { *this = *this * x; } void operator/=(const mpint &x) { *this = *this / x; } void operator%=(const mpint &x) { *this = *this % x; } friend istream& operator>>(istream &is, mpint &x) { string s; is >> s; x.str2num(s); return is; } friend ostream& operator<<(ostream &os, const mpint &x) { if (x.sign == -1) os << '-'; os << (x.data.empty() ? 0 : x.data.back()); IREP(i, x.data.size() - 1) os << setw(D) << setfill('0') << x.data[i]; return os; } }; using T_CHT = lint; struct ConvexHullTrick { static const T_CHT T_MIN = numeric_limits::lowest() + 1; struct Line { T_CHT a, b; // y = ax + b mutable pair rp; // (numerator, denominator) `x` coordinate of the crossing point with next line Line(T_CHT a, T_CHT b) : a(a), b(b), rp(T_MIN, T_MIN) {} static pair cross(const Line &ll, const Line &lr) { return make_pair(ll.b - lr.b, lr.a - ll.a); // `ll.a < lr.a` is assumed implicitly } bool operator<(const Line &r) const { if (b == T_MIN) { if (r.rp.first == T_MIN) return true; else return a * r.rp.second < r.rp.first; } else if (r.b == T_MIN) { if (rp.first == T_MIN) return false; else return !(r.a * rp.second < rp.first); } else return a < r.a; } }; struct Lines : multiset { bool flg_min; // true iff for minimization inline bool isNeedless(iterator itr) { if (size() == 1) return false; auto nxt = next(itr); if (itr == begin()) return itr->a == nxt->a and itr->b <= nxt->b; else { auto prv = prev(itr); if (nxt == end()) return itr->a == prv->a and itr->b <= prv->b; // Prevent overflow else return mpint(prv->b - itr->b) * (nxt->a - itr->a) >= mpint(itr->b - nxt->b) * (itr->a - prv->a); } } void add_line(T_CHT a, T_CHT b) { if (flg_min) a = -a, b = -b; auto itr = insert({a, b}); if (isNeedless(itr)) erase(itr); else { while (next(itr) != end() and isNeedless(next(itr))) { erase(next(itr)); } while (itr != begin() and isNeedless(prev(itr))) { erase(prev(itr)); } if (next(itr) != end()) { itr->rp = Line::cross(*itr, *next(itr)); } if (itr != begin()) { prev(itr)->rp = Line::cross(*prev(itr), *itr); } } } Lines(bool is_minimizer): flg_min(is_minimizer) {} pair get(T_CHT x) { auto itr = lower_bound({x, T_MIN}); T_CHT retval = T_MIN, reta = T_MIN; if (itr != end()) { retval = itr->a * x + itr->b; reta = itr->a; } if (itr != begin()) { T_CHT tmp = prev(itr)->a * x + prev(itr)->b; if (tmp >= retval) { retval = tmp; reta = max(reta, prev(itr)->a); } } return make_pair(flg_min ? -retval : retval, flg_min ? -reta : reta); } }; Lines lines; ConvexHullTrick(bool is_minimizer) : lines(is_minimizer) {} void add_line(T_CHT a, T_CHT b) { lines.add_line(a, b); } // Add y = ax + b pair get(T_CHT x) { return lines.get(x); } void add_convex_parabola(T_CHT c, T_CHT a, T_CHT b) { add_line(-2 * c * a, c * a * a + b); } // Add y = c(x - a)^2 + b T_CHT parabola_lower_bound(T_CHT c, T_CHT x) { return lines.get(x).first + c * x * x; } }; const T_CHT ConvexHullTrick::T_MIN; constexpr lint INF = 1e10; int N; vector A; vector ret; vector solve(vector V, const vector &W) { ConvexHullTrick cht(true); multiset vm; vector vmdel(V.size()); lint act = 0; REP(i, W.size()) { act += W[i]; cht.add_convex_parabola(1, -i - 2, act); } reverse(ALL(V)); act = 0; REP(i, V.size()) { act += V[i]; lint tmp = cht.parabola_lower_bound(1, i) + act; vm.insert(tmp); vmdel[i] = tmp; } vector ret(V.size()); REP(i, V.size()) { ret[i] = *vm.begin(); vm.erase(vm.lower_bound(vmdel[i])); } reverse(ALL(ret)); return ret; } void divide_and_conquer(int l, int r) { if (r <= l) return; if (l + 1 == r) { mmin(ret[l], 1 + A[l]); return; } if (l + 2 == r) { mmin(ret[l], 1 + A[l]); mmin(ret[l + 1], 1 + A[l + 1]); mmin(ret[l], 4 + A[l] + A[l + 1]); mmin(ret[l + 1], 4 + A[l] + A[l + 1]); return; } int c = (l + r) / 2; divide_and_conquer(l, c); divide_and_conquer(c, r); vector VL(c - l), VR(r - c); REP(i, c - l) VL[i] = A[l + i]; REP(i, r - c) VR[i] = A[c + i]; vector tmpl = solve(VL, VR); reverse(ALL(VL)); reverse(ALL(VR)); vector tmpr = solve(VR, VL); reverse(ALL(tmpr)); REP(i, c - l) mmin(ret[l + i], tmpl[i]); REP(i, r - c) mmin(ret[c + i], tmpr[i]); } int main() { cin >> N; A.resize(N); cin >> A; ret.assign(N, INF); divide_and_conquer(0, N); REP(i, N) printf("%lld\n", ret[i]); }