#include #include #include #include #include #include #include #include #include #include static const int MOD = 1000000007; using ll = long long; using u32 = uint32_t; using namespace std; template constexpr T INF = ::numeric_limits::max()/32*15+208; template vector make_v(U size, const T& init){ return vector(static_cast(size), init); } template auto make_v(U size, Ts... rest) { return vector(static_cast(size), make_v(rest...)); } template void chmin(T &a, const T &b){ a = (a < b ? a : b); } template void chmax(T &a, const T &b){ a = (a > b ? a : b); } template class RadixHeap { static constexpr int bit_length = sizeof(K)*8; K last; size_t sz, cnt; array>, bit_length> v; static inline int bsr(int x){ return x ? bit_length-__builtin_clz(x) : 0; } static inline int bsr(ll x){ return x ? bit_length-__builtin_clzll(x) : 0; } void pull() { if(cnt < v[0].size()) return;; int i = 1; while(v[i].empty()) i++; last = min_element(v[i].begin(),v[i].end())->first; for (auto &&x : v[i]) v[bsr(x.first ^ last)].push_back(x); v[i].clear(); } public: RadixHeap() : last(0), sz(0), cnt(0) {} void emplace(K x, V val){ sz++; v[bsr(x^last)].emplace_back(x, val); } pair top() { pull(); return v[0][cnt]; } void pop() { pull(); sz--; cnt++; } size_t size() const { return sz; } bool empty() const { return !sz; } }; template struct edge { int from, to; T cost; edge(int to, T cost) : from(-1), to(to), cost(cost) {} edge(int from, int to, T cost) : from(from), to(to), cost(cost) {} }; int main() { int n, v, sx, sy, gx, gy; cin >> n >> v >> sx >> sy >> gx >> gy; sx--; sy--; gx--; gy--; int m = min(v-1, n*18); auto dp = make_v(n*n, m+1, INF); // dp[i][j] : point:i , hp:j auto grid = make_v(n+2, n+2, INF); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { scanf("%d", &grid[i+1][j+1]); } } auto f = [&](int i, int j){ return i*n+j; }; RadixHeap> Q; dp[f(sy, sx)][0] = 0; Q.emplace(0, {f(sy, sx), 0}); array dy{-1, 1, 0, 0}, dx{0, 0, -1, 1}; while(!Q.empty()){ int cost; pair i; tie(cost, i) = Q.top(); Q.pop(); if(dp[i.first][i.second] < cost) continue; int x = i.first/n, y = i.first % n; for (int k = 0; k < 4; ++k) { auto to = i.second + grid[x+dx[k]+1][y+dy[k]+1]; if(to > m || dp[f(x+dx[k], y+dy[k])][to] <= cost+1) continue; dp[f(x+dx[k], y+dy[k])][to] = cost + 1; Q.emplace(cost+1, {f(x+dx[k], y+dy[k]), to}); } } int ans = *min_element(dp[f(gy, gx)].begin(),dp[f(gy, gx)].end()); cout << (ans == INF ? -1 : ans) << "\n"; return 0; }