#ifdef stderr_path #define LOCAL #endif #ifdef LOCAL #define _GLIBCXX_DEBUG #else #pragma GCC optimize("Ofast") #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // #define NDEBUG #define __precision__ 10 #define debug_stream std::cerr #define iostream_untie true #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #define __odd(n) ((n) & 1) #define __even(n) (not __odd(n)) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(n) #define __clz64(n) __builtin_clzll(n) #define __ctz32(n) __builtin_ctz(n) #define __ctz64(n) __builtin_ctzll(n) using i32 = int_least32_t; using i64 = int_least64_t; using ui32 = uint_least32_t; using ui64 = uint_least64_t; using pii = std::pair; using pll = std::pair; template using heap = std::priority_queue; template using minheap = std::priority_queue, std::greater>; template constexpr T inf = std::numeric_limits::max() / T(2) - T(1123456); namespace execution { std::chrono::system_clock::time_point start_time, end_time; void print_elapsed_time() { end_time = std::chrono::system_clock::now(); std::cerr << "\n----- Exec time : "; std::cerr << std::chrono::duration_cast( end_time - start_time) .count(); std::cerr << " ms -----\n\n"; } struct setupper { setupper() { if(iostream_untie) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } std::cout << std::fixed << std::setprecision(__precision__); #ifdef stderr_path if(freopen(stderr_path, "a", stderr)) { std::cerr << std::fixed << std::setprecision(__precision__); } #endif #ifdef stdout_path if(not freopen(stdout_path, "w", stdout)) { freopen("CON", "w", stdout); std::cerr << "Failed to open the stdout file\n\n"; } std::cout << ""; #endif #ifdef stdin_path if(not freopen(stdin_path, "r", stdin)) { freopen("CON", "r", stdin); std::cerr << "Failed to open the stdin file\n\n"; } #endif #ifdef LOCAL std::cerr << "----- stderr at LOCAL -----\n\n"; atexit(print_elapsed_time); start_time = std::chrono::system_clock::now(); #else fclose(stderr); #endif } } __setupper; } // namespace execution class myclock_t { std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built; public: explicit myclock_t() : is_built(false) {} void build(int crt_ln, const std::string &crt_func) { is_built = true; last_pt = built_pt = std::chrono::system_clock::now(); last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) { last_pt = std::chrono::system_clock::now(); last_ln = crt_ln, last_func = crt_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n"; } } void get(int crt_ln, const std::string &crt_func) { if(is_built) { std::chrono::system_clock::time_point crt_pt( std::chrono::system_clock::now()); int64_t diff = std::chrono::duration_cast(crt_pt - last_pt) .count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n"; } } }; #ifdef LOCAL myclock_t __myclock; #define build_clock() __myclock.build(__LINE__, __func__) #define set_clock() __myclock.set(__LINE__, __func__) #define get_clock() __myclock.get(__LINE__, __func__) #else #define build_clock() ((void)0) #define set_clock() ((void)0) #define get_clock() ((void)0) #endif namespace std { template void rsort(RAitr __first, RAitr __last) { sort(__first, __last, greater<>()); } template size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template struct hash> { size_t operator()(pair const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template ::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine( tuple_hash_calc::apply(seed, t), get(t)); } }; template struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template struct hash> { size_t operator()(tuple const &t) const { return tuple_hash_calc>::apply(0, t); } }; template istream &operator>>(std::istream &s, pair &p) { return s >> p.first >> p.second; } template ostream &operator<<(std::ostream &s, const pair &p) { return s << p.first << " " << p.second; } template istream &operator>>(istream &s, vector &v) { for(T &e : v) s >> e; return s; } template ostream &operator<<(ostream &s, const vector &v) { bool is_front = true; for(const T &e : v) { if(not is_front) s << ' '; else is_front = false; s << e; } return s; } template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { tupleos::apply(s, t); return s << " " << get(t); } }; template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { return s << get<0>(t); } }; template ostream &operator<<(ostream &s, const tuple &t) { return tupleos, tuple_size>::value - 1>::apply(s, t); } template <> ostream &operator<<(ostream &s, const tuple<> &t) { return s; } string revstr(string str) { reverse(str.begin(), str.end()); return str; } } // namespace std #ifdef LOCAL #define dump(...) \ debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \ dump_func(#__VA_ARGS__, __VA_ARGS__) template void dump_func(const char *ptr, const T &x) { debug_stream << '\t'; for(char c = *ptr; c != '\0'; c = *++ptr) { if(c != ' ') debug_stream << c; } debug_stream << " : " << x << '\n'; } template void dump_func(const char *ptr, const T &x, rest_t... rest) { debug_stream << '\t'; for(char c = *ptr; c != ','; c = *++ptr) { if(c != ' ') debug_stream << c; } debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...); } #else #define dump(...) ((void)0) #endif template void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; } template void write_range(P __first, P __second) { for(P i = __first; i != __second; std::cout << (++i == __second ? '\n' : ' ')) std::cout << *i; } // substitue y for x if x > y. template bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitue y for x if x < y. template bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; } // binary search. i64 bin(const std::function &f, i64 ok, i64 ng) { while(std::abs(ok - ng) > 1) { i64 mid = (ok + ng) / 2; (f(mid) ? ok : ng) = mid; } return ok; } double bin(const std::function &f, double ok, double ng, const double eps) { while(std::abs(ok - ng) > eps) { double mid = (ok + ng) / 2; (f(mid) ? ok : ng) = mid; } return ok; } // be careful that val is type-sensitive. template void init(A (&array)[N], const T &val) { std::fill((T *)array, (T *)(array + N), val); } template void reset(A &array) { memset(array, 0, sizeof(array)); } void for_permutation(size_t n, const std::function&)> &f) { std::vector idx(n); iota(idx.begin(), idx.end(), 0); do { f(idx); } while(std::next_permutation(idx.begin(), idx.end())); } void for_permutation(size_t n, const std::function &f) { size_t *__begin = new size_t[n], *__end = __begin + n; std::iota(__begin, __end, 0); do { f(__begin, __end); } while(std::next_permutation(__begin, __end)); delete[] __begin; } /* The main code follows. */ using namespace std; main() { void __solve(); ui32 t = 1; #ifdef LOCAL t = 1; #endif // cin >> t; while(t--) { __solve(); } } namespace math { template struct modint { int rep; constexpr modint() : rep(0) {} constexpr modint(int_fast64_t y) : rep(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} constexpr modint &operator+=(const modint &p) { return (rep += p.rep) < mod ? 0 : rep -= mod, *this; } constexpr modint &operator++() { return ++rep, *this; } constexpr modint operator++(int) { modint t = *this; return ++rep, t; } constexpr modint &operator-=(const modint &p) { return (rep += mod - p.rep) < mod ? 0 : rep -= mod, *this; } constexpr modint &operator--() { return --rep, *this; } constexpr modint operator--(int) { modint t = *this; return --rep, t; } constexpr modint &operator*=(const modint &p) { return rep = (int_fast64_t)rep * p.rep % mod, *this; } constexpr modint &operator/=(const modint &p) { return *this *= inverse(p); } // constexpr modint &operator%=(int m) { return rep %= m, *this; } constexpr modint operator-() const { return modint(-rep); } constexpr modint operator+(const modint &p) const { return modint(*this) += p; } constexpr modint operator-(const modint &p) const { return modint(*this) -= p; } constexpr modint operator*(const modint &p) const { return modint(*this) *= p; } constexpr modint operator/(const modint &p) const { return modint(*this) /= p; } // constexpr modint operator%(int m) const { return modint(*this) %= m; // } constexpr bool operator==(const modint &p) const { return rep == p.rep; } constexpr bool operator!=(const modint &p) const { return rep != p.rep; } constexpr bool operator!() const { return !rep; } // constexpr bool operator>(const modint &p) const { return rep > p.rep; } // constexpr bool operator<(const modint &p) const { return rep < p.rep; } // constexpr bool operator>=(const modint &p) const { return rep >= p.rep; } // constexpr bool operator<=(const modint &p) const { return rep <= p.rep; } constexpr friend modint inverse(const modint &p) { int a = p.rep, b = mod, u = 1, v = 0; while(b > 0) { int t = a / b; a -= t * b; a ^= b ^= a ^= b; u -= t * v; u ^= v ^= u ^= v; } return modint(u); } constexpr friend modint pow(modint p, int_fast64_t e) { if(e < 0) e = (e % (mod - 1) + mod - 1) % (mod - 1); modint ret = 1; while(e) { if(e & 1) ret *= p; p *= p; e >>= 1; } return ret; } friend std::ostream &operator<<(std::ostream &s, const modint &p) { return s << p.rep; } friend std::istream &operator>>(std::istream &s, modint &p) { int_fast64_t rep; p = modint((s >> rep, rep)); return s; } }; } // namespace math using namespace math; const i32 mod=1e9+7; using mint=modint; void __solve() { i32 n; cin>>n; vector a(n),b(n),c(n*2); for(i32 i=0; i>a[i]>>b[i]; c[i]=a[i],c[i+n]=b[i]; } sort(all(c)); c.erase(unique(all(c)),end(c)); for(i32 i=0; i=0; --j) { acc+=dp[j]; dp[j]=acc*inv[i]; } } for(i32 j=0; j=0; --j) { mint p=den*len[j]; nx[j][1]+=acc*p; for(i32 k=1; k<=i; ++k) { if(!dp[j][k]) continue; nx[j][k+1]+=dp[j][k]*p; acc+=dp[j][k]*kad[k]; } } } for(i32 j=0; j