#include #include #include #include #include #include #include #include #include #include static const int MOD = 1000000007; using ll = long long; using u32 = uint32_t; using namespace std; template constexpr T INF = ::numeric_limits::max()/32*15+208; template struct modint { ll val; modint(const ll x = 0) : val(x) { val = x; while(val < 0) val += M; while(val > M) val -= M; } modint operator+(const modint a) const { return modint(*this) += a; } modint operator-(const modint a) const { return modint(*this) -= a; } modint operator*(const modint a) const { return modint(*this) *= a; } modint operator/(const modint a) const { return modint(*this) /= a; } modint operator-() const { return modint(M-val); } modint inv() const { ll u = 1, v = 0, s = 0, t = 1, m = M, x = val; while (x) {ll q = m/x; swap(s -= q*u, u); swap(t -= q*v, v); swap(m -= q*x, x); } if(s < 0) s += M; return modint(s); } modint pow(ll n) const { ll u = 1, xx = val; while (n > 0){ if (n&1) u = u * xx % M; xx = xx * xx % M; n >>= 1; } return modint(u); } modint& operator+=(const modint a){ val += a.val; if(val >= M) val -= M; return *this; } modint& operator-=(const modint a){ val -= a.val; if(val < 0) val += M; return *this; } modint& operator*=(const modint a){ val = val * a.val % M; return *this; } modint& operator/=(const modint a){ val = val * a.inv().val % M; return *this;} modint& operator=(const int& x){ val = x; while(val < 0) val += M; while(val > M) val -= M; return *this; } }; class Factorial { using mint = modint; vector facts, factinv; public: explicit Factorial(int n) : facts(static_cast(n+1)), factinv(static_cast(n+1)) { facts[0] = 1; for (int i = 1; i < n+1; ++i) facts[i] = facts[i-1]*mint(i); factinv[n] = facts[n].inv(); for (int i = n-1; i >= 0; --i) factinv[i] = factinv[i+1] * mint(i+1); } mint fact(int k) const { if(k >= 0) return facts[k]; else return factinv[-k]; } mint operator[](const int &k) const { if(k >= 0) return facts[k]; else return factinv[-k]; } mint C(int p, int q) const { if(q < 0 || p < q) return 0; return facts[p] * factinv[q] * factinv[p-q]; } mint P(int p, int q) const { if(q < 0 || p < q) return 0; return facts[p] * factinv[p-q]; } mint H(int p, int q) const { if(p < 0 || q < 0) return 0; return q == 0 ? 1 : C(p+q-1, q); } }; using mint = modint; static inline int bsr(int x){ return x ? 32 - __builtin_clz(x) : 0; } int main() { int d, l, r, k; cin >> d >> l >> r >> k; mint c = 2, ans = 0, p = 1; Factorial f(1<