#ifdef LOCAL #define _GLIBCXX_DEBUG #define __clock__ #else #pragma GCC optimize("Ofast") // #define NDEBUG #endif #define __precision__ 10 #define iostream_untie true #define debug_stream std::cerr #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #define odd(n) ((n) & 1) #define even(n) (not __odd(n)) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(n) #define __clz64(n) __builtin_clzll(n) #define __ctz32(n) __builtin_ctz(n) #define __ctz64(n) __builtin_ctzll(n) using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t; using pii = std::pair; using pll = std::pair; template using heap = std::priority_queue; template using rheap = std::priority_queue, std::greater>; template using hashmap = std::unordered_map; template using hashset = std::unordered_set; namespace execution { using namespace std::chrono; system_clock::time_point start_time, end_time; long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast(end_time - start_time).count(); } void print_elapsed_time() { std::cerr << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n\n"; } struct setupper { setupper() { if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(__precision__); #ifdef stderr_path if(freopen(stderr_path, "a", stderr)) { std::cerr << std::fixed << std::setprecision(__precision__); } #endif #ifdef stdout_path if(not freopen(stdout_path, "w", stdout)) { freopen("CON", "w", stdout); std::cerr << "Failed to open the stdout file\n\n"; } std::cout << ""; #endif #ifdef stdin_path if(not freopen(stdin_path, "r", stdin)) { freopen("CON", "r", stdin); std::cerr << "Failed to open the stdin file\n\n"; } #endif #ifdef LOCAL std::cerr << "----- stderr at LOCAL -----\n\n"; atexit(print_elapsed_time); #else fclose(stderr); #endif #ifdef __clock__ start_time = system_clock::now(); #endif } } __setupper; class myclock_t { system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built; public: myclock_t() : is_built(false) {} void build(int crt_ln, const std::string &crt_func) { is_built = true, last_pt = built_pt = system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) last_pt = system_clock::now(), last_ln = crt_ln, last_func = crt_func; else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n"; } void get(int crt_ln, const std::string &crt_func) { if(is_built) { system_clock::time_point crt_pt(system_clock::now()); long long diff = duration_cast(crt_pt - last_pt).count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n"; } } }; } // namespace execution #ifdef __clock__ execution::myclock_t __myclock; #define build_clock() __myclock.build(__LINE__, __func__) #define set_clock() __myclock.set(__LINE__, __func__) #define get_clock() __myclock.get(__LINE__, __func__) #else #define build_clock() ((void)0) #define set_clock() ((void)0) #define get_clock() ((void)0) #endif namespace std { template void rsort(P __first, P __last) { sort(__first, __last, greater<>()); } template size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template struct hash> { size_t operator()(pair const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template ::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc::apply(seed, t), get(t)); } }; template struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template struct hash> { size_t operator()(tuple const &t) const { return tuple_hash_calc>::apply(0, t); } }; template istream &operator>>(std::istream &s, pair &p) { return s >> p.first >> p.second; } template ostream &operator<<(std::ostream &s, const pair &p) { return s << p.first << " " << p.second; } template istream &operator>>(istream &s, vector &v) { for(T &e : v) s >> e; return s; } template ostream &operator<<(ostream &s, const vector &v) { bool is_front = true; for(const T &e : v) { if(not is_front) s << ' '; else is_front = false; s << e; } return s; } template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { tupleos::apply(s, t); return s << " " << get(t); } }; template struct tupleos { static ostream &apply(ostream &s, const tuple_t &t) { return s << get<0>(t); } }; template ostream &operator<<(ostream &s, const tuple &t) { return tupleos, tuple_size>::value - 1>::apply(s, t); } template <> ostream &operator<<(ostream &s, const tuple<> &t) { return s; } string revstr(string str) { reverse(str.begin(), str.end()); return str; } } // namespace std #ifdef LOCAL #define dump(...) \ debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \ dump_func(#__VA_ARGS__, __VA_ARGS__) template void dump_func(const char *ptr, const T &x) { debug_stream << '\t'; for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ') debug_stream << c; debug_stream << " : " << x << '\n'; } template void dump_func(const char *ptr, const T &x, rest_t... rest) { debug_stream << '\t'; for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ') debug_stream << c; debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...); } #else #define dump(...) ((void)0) #endif template void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; } template void write_range(P __first, P __second) { for(P i = __first; i != __second; std::cout << (++i == __second ? '\n' : ' ')) std::cout << *i; } // substitue y for x if x > y. template inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitue y for x if x < y. template inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; } // binary search. i64 bin(const std::function &pred, i64 ok, i64 ng) { while(std::abs(ok - ng) > 1) { i64 mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; } return ok; } double bin(const std::function &pred, double ok, double ng, const double eps) { while(std::abs(ok - ng) > eps) { double mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; } return ok; } // be careful that val is type-sensitive. template void init(A (&array)[N], const T &val) { std::fill((T *)array, (T *)(array + N), val); } // reset all bits. template void reset(A &array) { memset(array, 0, sizeof(array)); } /* The main code follows. */ using namespace std; main() { void __solve(); u32 t = 1; #ifdef LOCAL t = 1; #endif // t = -1; // cin >> t; while(t--) { __solve(); } } class Union_Find { std::vector dat; std::vector cyc, clr, flip; size_t comp, isol; bool is_bip; public: Union_Find(int n) { init(n); } void init(int n) { dat.assign(n, -1); cyc.assign(n, false); clr.assign(n, false); flip.assign(n, false); comp = isol = n; is_bip = true; } int find(int x) { if(dat[x] < 0) return x; int r = find(dat[x]); if(flip[dat[x]]) { clr[x] = not clr[x]; flip[x] = not flip[x]; } return dat[x] = r; } size_t count() const { return comp; } size_t size(int x) { return -dat[find(x)]; } size_t isolated() const { return isol; } bool color(int x) { find(x); return clr[x]; } bool is_cyclic(int x) { return cyc[find(x)]; } bool is_same(int x, int y) { return find(x) == find(y); } bool is_bipartite() const { return is_bip; } bool unite(int x, int y) { int _x = find(x); int _y = find(y); bool f = clr[x] == clr[y]; x = _x, y = _y; if(x == y) { if(f) { is_bip = false; } cyc[x] = true; return false; } if(dat[x] > dat[y]) std::swap(x, y); if(dat[y] == -1) { --isol; if(dat[x] == -1) { --isol; } } dat[x] += dat[y]; dat[y] = x; cyc[x] = cyc[x] || cyc[y]; if(f) { clr[y] = not clr[y]; flip[y] = not flip[y]; } --comp; return true; } }; i64 dfs(int v,int p,vector> &g,vector &sub) { i64 ret=0; for(int u : g[v]) { if(u==p) continue; ret+=dfs(u,v,g,sub); ret+=sub[u]; sub[v]+=sub[u]; } return ret; } void __solve() { int n,m,Q; cin>>n>>m>>Q; vector> g(n); Union_Find uf(n); for(i32 i=0; i>a>>b; a--,b--; g[a].emplace_back(b); g[b].emplace_back(a); uf.unite(a,b); } vector d9; vector sub2(n); vector sub(n); for(i32 q=0; q>a>>b; --a,--b; if(uf.is_same(a,b)) d9.emplace_back(a,b); else { sub[a]++,sub[b]++; } } bool isro[1<<17]={}; for(i32 i=0; i par(n),dep(n); for(i32 r=0; r que; que.emplace(r,now); while(!que.empty()) { int f; i64 w; tie(f,w)=que.front(); que.pop(); sbmin(now,w); for(int u : g[f]) { if(u!=par[f]) { par[u]=f; dep[u]=dep[f]+1; que.emplace(u,w+allw-sub[u]*2); } } } ans+=now; } } vector> parf(18,vector(n)); for(i32 v=0; vdep[b]) { swap(a,b); } int diff=dep[b]-dep[a]; ans+=diff; for(int t=0,pw2=1; diff; pw2<<=1,t++) { if(diff&1) { b=parf[t][b]; } diff>>=1; } if(b==a) { continue; } for(i32 i=17; i>=0; --i) { if(parf[i][a]!=parf[i][b]) { a=parf[i][a],b=parf[i][b]; ans+=1<