#include #pragma GCC diagnostic ignored "-Wsign-compare" #pragma GCC diagnostic ignored "-Wsign-conversion" using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; using uint = unsigned int; using usize = std::size_t; using ll = long long; using ull = unsigned long long; using ld = long double; template constexpr T popcount(const T u) { return u ? static_cast(__builtin_popcountll(static_cast(u))) : static_cast(0); } template constexpr T log2p1(const T u) { return u ? static_cast(64 - __builtin_clzll(static_cast(u))) : static_cast(0); } template constexpr T msbp1(const T u) { return log2p1(u); } template constexpr T lsbp1(const T u) { return __builtin_ffsll(u); } template constexpr T clog(const T u) { return u ? log2p1(u - 1) : static_cast(u); } template constexpr bool ispow2(const T u) { return u and (static_cast(u) & static_cast(u - 1)) == 0; } template constexpr T ceil2(const T u) { return static_cast(1) << clog(u); } template constexpr T floor2(const T u) { return u == 0 ? static_cast(0) : static_cast(1) << (log2p1(u) - 1); } template constexpr bool btest(const T mask, const usize ind) { return static_cast((static_cast(mask) >> ind) & static_cast(1)); } template void bset(T& mask, const usize ind) { mask |= (static_cast(1) << ind); } template void breset(T& mask, const usize ind) { mask &= ~(static_cast(1) << ind); } template void bflip(T& mask, const usize ind) { mask ^= (static_cast(1) << ind); } template void bset(T& mask, const usize ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); } template constexpr T bcut(const T mask, const usize ind) { return ind == 0 ? static_cast(0) : static_cast((static_cast(mask) << (64 - ind)) >> (64 - ind)); } template bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); } template bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); } constexpr unsigned int mod = 1000000007; template constexpr T inf_v = std::numeric_limits::max() / 4; template constexpr Real pi_v = Real{3.141592653589793238462643383279502884}; template T read() { T v; return std::cin >> v, v; } template auto read(const usize size, Args... args) { std::vector(args...))> ans(size); for (usize i = 0; i < size; i++) { ans[i] = read(args...); } return ans; } template auto reads() { return std::tuple...>{read()...}; } # define SHOW(...) static_cast(0) template T make_v(const T v) { return v; } template auto make_v(const std::size_t size, Args... args) { return std::vector(size, make_v(args...)); } namespace bbst_node { template struct key_node : Node { using ptr = key_node* const; using const_ptr = const ptr; using key_type = Key; using comp_type = Comp; key_node() : Node{}, key{Key{}} {} template key_node(const Key& key, Args... args) : Node{args...}, key{key} { this->sz = 1; } void pull_up(const_ptr l, const_ptr r) { Node::pull_up(l, r); } void push_down(ptr l, ptr r) { Node::push_down(l, r); } template void set(const Value& val, const_ptr l, const_ptr r) { Node::set(val, l, r); } template void act(const Op& o) { Node::act(o); } friend std::ostream& operator<<(std::ostream& os, const key_node& n) { return os << "key=" << n.key << ":" << static_cast(n); } const key_type key; }; struct node { using ptr = node* const; using const_ptr = const ptr; void pull_up(const_ptr l, const_ptr r) { sz = (l ? l->sz : 0UL) + 1UL + (r ? r->sz : 0UL); } void push_down(ptr, ptr) {} friend std::ostream& operator<<(std::ostream& os, const node& n) { return os << "size=" << n.sz; } usize sz = 0; }; template struct value_node { using ptr = value_node* const; using const_ptr = const ptr; using value_type = Value; value_node() = default; value_node(const value_type& value) : value{value}, sz{1} {} void pull_up(const_ptr l, const_ptr r) { sz = (l ? l->sz : 0UL) + 1UL + (r ? r->sz : 0UL); } void push_down(ptr, ptr) {} void set(const value_type& val, const_ptr, const_ptr) { value = val; } friend std::ostream& operator<<(std::ostream& os, const value_node& n) { return os << "value=" << n.value; } value_type value{}; usize sz = 0; }; template struct merge_node { using ptr = merge_node* const; using const_ptr = const ptr; using value_monoid_type = ValueMonoid; using value_type = typename value_monoid_type::value_type; merge_node() = default; merge_node(const value_type& value) : value{value}, merged{value}, sz{1} {} void pull_up(const_ptr l, const_ptr r) { sz = (l ? l->sz : 0UL) + 1UL + (r ? r->sz : 0UL), merged = value_monoid_type::merge((l ? l->merged : value_monoid_type::id()), value_monoid_type::merge(value, (r ? r->merged : value_monoid_type::id()))); } void push_down(ptr, ptr) {} void set(const value_type& val, const_ptr l, const_ptr r) { value = val, pull_up(l, r); } friend std::ostream& operator<<(std::ostream& os, const merge_node& n) { return os << "value=" << n.value << ",merged=" << n.merged; } value_type value = value_monoid_type::id(), merged = value_monoid_type::id(); usize sz = 0; }; template struct lazy_node { using ptr = lazy_node* const; using const_ptr = const ptr; using monoid_act_type = MonoidAct; using value_monoid_type = typename monoid_act_type::value_monoid_type; using operator_monoid_type = typename monoid_act_type::operator_monoid_type; using value_type = typename value_monoid_type::value_type; using operator_type = typename operator_monoid_type::operator_type; lazy_node() = default; lazy_node(const value_type& value) : value{value}, merged{value}, sz{1} {} void pull_up(const_ptr l, const_ptr r) { sz = (l ? l->sz : 0UL) + 1UL + (r ? r->sz : 0UL), merged = value_monoid_type::merge((l ? l->merged : value_monoid_type::id()), value_monoid_type::merge(value, (r ? r->merged : value_monoid_type::id()))); } void push_down(ptr l, ptr r) { if (op == operator_monoid_type::id()) { return; } if (l) { l->act(op); } if (r) { r->act(op); } op = operator_monoid_type::id(); } void set(const value_type& val, const_ptr l, const_ptr r) { value = val, pull_up(l, r); } void act(const operator_type& o) { value = monoid_act_type::apply(o, value, 1), merged = monoid_act_type::apply(o, merged, sz), op = operator_monoid_type::compose(op, o); } friend std::ostream& operator<<(std::ostream& os, const lazy_node& n) { return os << "value=" << n.value << ",merged=" << n.merged << ",op=" << n.op; } value_type value = value_monoid_type::id(), merged = value_monoid_type::id(); operator_type op = operator_monoid_type::id(); usize sz = 0; }; } // namespace bbst_node template class base_splaytree { private: class node { using ptr = node*; using const_ptr = const node* const; using tree = ptr; public: node() : node_data{} {} template node(Args... args) : node_data{args...} {} usize size() const { return node_data.sz; } const NodeData& data() const { return node_data; } template void act(const Operator& op) { node_data.act(op); } template void set(const Value& value) { node_data.set(value, data_ptr_of(l), data_ptr_of(r)), pull_up(); } friend std::ostream& operator<<(std::ostream& os, const node& n) { return os << "[" << n.node_data << "]"; } bool has_left() const { return l; } bool has_right() const { return r; } bool has_parent() const { return p; } const node& left() const { return deptr(l); } const node& right() const { return deptr(r); } const node& parent() const { return deptr(p); } static node& deptr(ptr x) { return x ? (*x) : empty_node; } static ptr merge(tree tp1, tree tp2) { if (not tp1) { return tp2; } if (not tp2) { return tp1; } ptr lp2 = kth_ptr(tp2, 0); return tp2 = (lp2->splay(), lp2), tp2->push_down(), tp2->l = tp1, tp1->p = tp2, tp2->pull_up(), tp2; } static std::pair split_at(tree tp, const usize pos) { return split(tp, kth_ptr(tp, pos)); } static std::tuple split_range(tree tp, const usize pos_min, const usize pos_sup) { auto ts = split_at(tp, pos_min), trs = split_at(ts.second, pos_sup - pos_min); return std::make_tuple(ts.first, trs.first, trs.second); } template static std::pair split_lower(tree tp, const Key& key) { return split(tp, lower_bound(tp, key)); } template static std::pair split_upper(tree tp, const Key& key) { return split(tp, upper_bound(tp, key)); } template static std::tuple split_key_range(tree tp, const Key& key_min, const Key& key_max) { auto ts = split_lower(tp, key_min), trs = split_upper(ts.second, key_max); return std::make_tuple(ts.first, trs.first, trs.second); } private: static NodeData* data_ptr_of(ptr x) { return x ? &(x->node_data) : nullptr; } static usize size_of(const_ptr x) { return x ? x->size() : 0UL; } bool is_root() const { return (not p) or (p->l != this and p->r != this); } int is_left() const { return is_root() ? 0 : (p->l == this ? 1 : -1); } void pull_up() { node_data.pull_up(data_ptr_of(l), data_ptr_of(r)); } void push_down() { node_data.push_down(data_ptr_of(l), data_ptr_of(r)); } void rot() { ptr pp = p->p; const int isl = p->is_left(); if (is_left() == 1) { p->l = r, (r ? r->p : p) = p, r = p, p->p = this; } else { p->r = l, (l ? l->p : p) = p, l = p, p->p = this; } p->pull_up(), pull_up(); p = pp; if (isl == 0) { return; } (isl == 1 ? pp->l : pp->r) = this, pp->pull_up(); } void splay() { while (not is_root()) { (p->is_root() ? rot() : is_left() == p->is_left() ? (p->rot(), rot()) : (rot(), rot())); } } static std::pair split(tree tp, ptr p) { if (not p) { return {tp, nullptr}; } tp = (p->splay(), p); ptr lp = tp->l; if (not lp) { return std::make_pair(nullptr, tp); } return tp->push_down(), lp->p = nullptr, tp->l = nullptr, tp->pull_up(), std::make_pair(lp, tp); } static ptr kth_ptr(const tree tp, usize k) { for (ptr p = tp; p;) { p->push_down(); const usize ind = size_of(p->l); if (ind == k) { return p; } p = (k < ind ? p->l : (k -= (ind + 1), p->r)); } return nullptr; } template static ptr lower_bound(const tree tp, const Key& key) { static typename NodeData::comp_type comp{}; ptr ans = nullptr; for (ptr p = tp; p;) { p->push_down(), p = (comp(p->data().key, key) ? p->r : (ans = p, p->l)); } return ans; } template static ptr upper_bound(const tree tp, const Key& key) { static typename NodeData::comp_type comp{}; ptr ans = nullptr; for (ptr p = tp; p;) { p->push_down(), p = (comp(key, p->data().key) ? (ans = p, p->l) : p->r); } return ans; } static node empty_node; // inline変数を使いたいでござる NodeData node_data; ptr l = nullptr, r = nullptr, p = nullptr; }; using ptr = node*; using const_ptr = const node* const; ptr root = nullptr; public: base_splaytree() {} base_splaytree(const ptr r) : root{r} {} template base_splaytree(Args... args) : root{new node{args...}} {} bool empty() const { return not root; } usize size() const { return root ? root->sz : 0UL; } const node& top() const { return node::deptr(root); } const node at(const usize pos) { return fold_range(pos, pos + 1); } const node fold_range(const usize pos_min, const usize pos_sup) { auto ts = node::split_range(root, pos_min, pos_sup); const node ans = node::deptr(std::get<1>(ts)); return root = node::merge(std::get<0>(ts), node::merge(std::get<1>(ts), std::get<2>(ts))), ans; } template const node fold_key_range(const Key& key_min, const Key& key_max) { auto ts = node::split_key_range(root, key_min, key_max); const node ans = node::deptr(std::get<1>(ts)); return root = node::merge(std::get<0>(ts), node::merge(std::get<1>(ts), std::get<2>(ts))), ans; } template const node fold_lower(const Key& key) { auto ts = node::split_lower(root, key); const node ans = node::deptr(ts.first); return root = node::merge(ts.first, ts.second), ans; } template const node fold_upper(const Key& key) { auto ts = node::split_upper(root, key); const node ans = node::deptr(ts.second); return root = node::merge(ts.first, ts.second), ans; } template base_splaytree& set_at(const usize pos, const Value& value) { auto ts = node::split_range(root, pos, pos + 1); std::get<1>(ts)->set(value); return root = node::merge(std::get<0>(ts), node::merge(std::get<1>(ts), std::get<2>(ts))), *this; } template base_splaytree& set(const Key& key, const Value& value) { auto ts = node::split_key_range(root, key, key); std::get<1>(ts)->set(value); return root = node::merge(std::get<0>(ts), node::merge(std::get<1>(ts), std::get<2>(ts))), *this; } template base_splaytree& act_range(const usize pos_min, const usize pos_sup, const Op& op) { auto ts = node::split_range(root, pos_min, pos_sup); std::get<1>(ts)->act(op); return root = node::merge(std::get<0>(ts), node::merge(std::get<1>(ts), std::get<2>(ts))), *this; } template base_splaytree& act_key_range(const Key& key_min, const Key& key_max, const Op& op) { auto ts = node::split_key_range(root, key_min, key_max); std::get<1>(ts)->act(op); return root = node::merge(std::get<0>(ts), node::merge(std::get<1>(ts), std::get<2>(ts))), *this; } base_splaytree& merge(base_splaytree&& t) { return root = node::merge(root, t.root), *this; } base_splaytree split_at(const usize pos) { auto ts = node::split_at(root, pos); return root = ts.first, base_splaytree(ts.second); } std::pair split_range(const usize pos_min, const usize pos_sup) { auto ts = node::split_range(root, pos_min, pos_sup); return root = std::get<0>(ts), std::make_pair(base_splaytree(std::get<1>(ts)), base_splaytree(std::get<2>(ts))); } base_splaytree& erase_at(const usize pos) { auto ts = node::split_at(root, pos), trs = node::split_at(ts.second, 1); return root = node::merge(ts.first, trs.second), *this; } base_splaytree& insert_at(const usize pos, base_splaytree&& t) { auto ts = node::split_at(root, pos); return root = node::merge(node::merge(ts.first, t.root), ts.second), *this; } template base_splaytree split_lower(const Key& key) { auto ts = node::split_lower(root, key); return root = ts.first, base_splaytree(ts.second); } template base_splaytree split_upper(const Key& key) { auto ts = node::split_upper(root, key); return root = ts.first, base_splaytree(ts.second); } template std::pair split_key_range(const Key& key_min, const Key& key_max) { auto ts = node::split_key_range(root, key_min, key_max); return root = std::get<0>(ts), std::make_pair(base_splaytree(std::get<1>(ts)), base_splaytree(std::get<2>(ts))); } base_splaytree& insert(const node& n) { auto ts = node::split_lower(root, n.data().key); return root = node::merge(node::merge(ts.first, new node{n}), ts.second), *this; } std::vector data() const { if (empty()) { return std::vector{}; } auto dfs = [&](auto&& self, const node& n) -> std::vector { std::vector ans; if (n.has_left()) { for (auto&& e : self(self, n.left())) { ans.emplace_back(e); } } ans.push_back(n); if (n.has_right()) { for (auto&& e : self(self, n.right())) { ans.emplace_back(e); } } return ans; }; return dfs(dfs, *root); } }; template typename base_splaytree::node base_splaytree::node::empty_node = node{}; template using splaytree = base_splaytree>; template> using mset_splaytree = base_splaytree>; template> using mmap_splaytree = base_splaytree, Comp>>; template using merge_splaytree = base_splaytree>; template using lazy_splaytree = base_splaytree>; /** * http://xoshiro.di.unimi.it/xoshiro128starstar.c * http://xoshiro.di.unimi.it/xoshiro256starstar.c * http://xoshiro.di.unimi.it/splitmix64.c */ class xoshiro { public: using result_type = uint32_t; static constexpr result_type min() { return std::numeric_limits::min(); } static constexpr result_type max() { return std::numeric_limits::max(); } xoshiro() : xoshiro(std::random_device{}()) {} xoshiro(uint64_t seed) { uint64_t z = 0; for (int i = 0; i < 4; i++) { z = (seed += 0x9e3779b97f4a7c15), z = (z ^ (z >> 33)) * 0x62A9D9ED799705F5, z = (z ^ (z >> 28)) * 0xCB24D0A5C88C35B3, s[i] = static_cast(z >> 32); } } result_type operator()() { const result_type result = rotl(s[1] * 5, 7) * 9, t = s[1] << 9; return s[2] ^= s[0], s[3] ^= s[1], s[1] ^= s[2], s[0] ^= s[3], s[2] ^= t, s[3] = rotl(s[3], 11), result; } void discard(const usize rep) { for (usize i = 0; i < rep; i++) { (*this)(); } } private: result_type s[4]; static result_type rotl(const result_type x, const int k) { return (x << k) | (x >> (32 - k)); } }; class xoshiro_64 { public: using result_type = uint64_t; static constexpr result_type min() { return std::numeric_limits::min(); } static constexpr result_type max() { return std::numeric_limits::max(); } xoshiro_64() : xoshiro_64(std::random_device{}()) {} xoshiro_64(uint64_t seed) { uint64_t z = 0; for (int i = 0; i < 4; i++) { z = (seed += 0x9e3779b97f4a7c15), z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9, z = (z ^ (z >> 27)) * 0x94d049bb133111eb, s[i] = static_cast(z ^ (z >> 31)); } } result_type operator()() { const result_type result = rotl(s[1] * 5, 7) * 9, t = s[1] << 17; return s[2] ^= s[0], s[3] ^= s[1], s[1] ^= s[2], s[0] ^= s[3], s[2] ^= t, s[3] = rotl(s[3], 45), result; } void discard(const usize rep) { for (usize i = 0; i < rep; i++) { (*this)(); } } private: result_type s[4]; static result_type rotl(const result_type x, const int k) { return (x << k) | (x >> (64 - k)); } }; template class rng_base { public: using rng_type = Rng; using result_type = typename rng_type::result_type; static constexpr result_type min() { return rng_type::min(); } static constexpr result_type max() { return rng_type::max(); } rng_base() : rng_base(std::random_device{}()) {} rng_base(const u64 seed) : rng(seed) {} ~rng_base() = default; result_type operator()(const result_type max = std::numeric_limits::max()) { if (max == std::numeric_limits::max()) { return static_cast(rng()); } if (ispow2(max + 1)) { return static_cast(rng() & max); } const result_type mask = static_cast(ceil2(static_cast(max + 1))) - 1; while (true) { const result_type ans = static_cast(rng() & mask); if (ans <= max) { return ans; } } } result_type operator()(const result_type min, const result_type max) { return min + (*this)(max - min); } operator bool() { return *this(0, 1); } template std::pair pair(const Int min, const Int max, const bool sorted = false) { return sorted ? std::minmax(*this(min, max), *this(min, max)) : std::pair{*this(min, max), *this(min, max)}; } template std::vector vec(const std::size_t size, const Int min, const Int max) { std::vector v(size); for (std::size_t i = 0; i < size; i++) { v[i] = *this(min, max); } return v; } std::vector perm(const usize n) { std::vector ans(n); std::iota(ans.begin(), ans.end(), 0UL); std::shuffle(ans.begin(), ans.end(), rng); return ans; } private: Rng rng; }; using rng_mt = rng_base; using rng_mt64 = rng_base; using rng_xoshiro = rng_base; using rng_xoshiro64 = rng_base; rng_mt g_rng_mt; rng_mt64 g_rng_mt64; rng_xoshiro g_rng_xo; rng_xoshiro64 g_rng_xo64; template class base_rbstree { private: class node { using ptr = node*; using const_ptr = const node* const; using tree = ptr; public: node() : node_data{} {} template node(Args... args) : node_data{args...} {} usize size() const { return node_data.sz; } const NodeData& data() const { return node_data; } template void act(const Operator& op) { node_data.act(op); } template void set(const Value& value) { node_data.set(value, data_ptr_of(l), data_ptr_of(r)), pull_up(); } friend std::ostream& operator<<(std::ostream& os, const node& n) { return os << "[" << n.node_data << "]"; } bool has_left() const { return l; } bool has_right() const { return r; } const node& left() const { return deptr(l); } const node& right() const { return deptr(r); } static node& deptr(ptr x) { return x ? (*x) : empty_node; } static ptr merge(tree tp1, tree tp2) { if (not tp1) { return tp2; } if (not tp2) { return tp1; } if (g_rng_xo(static_cast(size_of(tp1) + size_of(tp2) - 1)) < static_cast(size_of(tp1))) { return tp1->push_down(), tp1->r = merge(tp1->r, tp2), tp1->pull_up(), tp1; } else { return tp2->push_down(), tp2->l = merge(tp1, tp2->l), tp2->pull_up(), tp2; } } static std::pair split_at(tree tp, const usize pos) { if (not tp) { return {nullptr, nullptr}; } tp->push_down(); if (pos == 0) { return std::make_pair(nullptr, tp); } if (pos == size_of(tp)) { return std::make_pair(tp, nullptr); } if (pos <= size_of(tp->l)) { auto ls = split_at(tp->l, pos); return tp->l = ls.second, tp->pull_up(), std::make_pair(ls.first, tp); } else { auto rs = split_at(tp->r, pos - size_of(tp->l) - 1); return tp->r = rs.first, tp->pull_up(), std::make_pair(tp, rs.second); } } static std::tuple split_range(tree tp, const usize pos_min, const usize pos_sup) { auto ts = split_at(tp, pos_min), trs = split_at(ts.second, pos_sup - pos_min); return std::make_tuple(ts.first, trs.first, trs.second); } template static std::pair split_lower(tree tp, const Key& key) { if (not tp) { return {nullptr, nullptr}; } const typename NodeData::comp_type& comp{}; if (comp(tp->data().key, key)) { auto rs = split_lower(tp->r, key); return tp->r = rs.first, tp->pull_up(), std::make_pair(tp, rs.second); } else { auto ls = split_lower(tp->l, key); return tp->l = ls.second, tp->pull_up(), std::make_pair(ls.first, tp); } } template static std::pair split_upper(tree tp, const Key& key) { if (not tp) { return {nullptr, nullptr}; } const typename NodeData::comp_type& comp{}; if (comp(key, tp->data().key)) { auto ls = split_upper(tp->l, key); return tp->l = ls.second, tp->pull_up(), std::make_pair(ls.first, tp); } else { auto rs = split_upper(tp->r, key); return tp->r = rs.first, tp->pull_up(), std::make_pair(tp, rs.second); } } template static std::tuple split_key_range(tree tp, const Key& key_min, const Key& key_max) { auto ts = split_lower(tp, key_min), trs = split_upper(ts.second, key_max); return std::make_tuple(ts.first, trs.first, trs.second); } private: static NodeData* data_ptr_of(ptr x) { return x ? &(x->node_data) : nullptr; } static usize size_of(const_ptr x) { return x ? x->size() : 0UL; } void pull_up() { node_data.pull_up(data_ptr_of(l), data_ptr_of(r)); } void push_down() { node_data.push_down(data_ptr_of(l), data_ptr_of(r)); } static node empty_node; // inline変数を使いたいでござる NodeData node_data; ptr l = nullptr, r = nullptr; }; using ptr = node*; ptr root = nullptr; public: base_rbstree() = default; base_rbstree(const ptr r) : root{r} {} template base_rbstree(Args... args) : root{new node{args...}} {} bool empty() const { return not root; } usize size() const { return node::size(root); } const node& top() const { return node::deptr(root); } node at(const usize pos) { return fold_range(pos, pos + 1); } node fold_range(const usize pos_min, const usize pos_sup) { auto ts = node::split_range(root, pos_min, pos_sup); const node ans = node::deptr(std::get<1>(ts)); return root = node::merge(std::get<0>(ts), node::merge(std::get<1>(ts), std::get<2>(ts))), ans; } template node fold_key_range(const Key& key_min, const Key& key_max) { auto ts = node::split_key_range(root, key_min, key_max); const node ans = node::deptr(std::get<1>(ts)); return root = node::merge(std::get<0>(ts), node::merge(std::get<1>(ts), std::get<2>(ts))), ans; } template node fold_lower(const Key& key) { auto ts = node::split_lower(root, key); const node ans = node::deptr(ts.first); return root = node::merge(ts.first, ts.second), ans; } template node fold_upper(const Key& key) { auto ts = node::split_upper(root, key); const node ans = node::deptr(ts.first); return root = node::merge(ts.first, ts.second), ans; } template base_rbstree& set_at(const usize pos, const Value& value) { auto ts = node::split_range(root, pos, pos + 1); std::get<1>(ts)->set(value); return root = node::merge(std::get<0>(ts), node::merge(std::get<1>(ts), std::get<2>(ts))), *this; } template base_rbstree& set(const Key& key, const Value& value) { auto ts = node::split_key_range(root, key, key); std::get<1>(ts)->set(value); return root = node::merge(std::get<0>(ts), node::merge(std::get<1>(ts), std::get<2>(ts))), *this; } template base_rbstree& act_range(const usize pos_min, const usize pos_sup, const Op& op) { auto ts = node::split_range(root, pos_min, pos_sup); std::get<1>(ts)->act(op); return root = node::merge(std::get<0>(ts), node::merge(std::get<1>(ts), std::get<2>(ts))), *this; } template base_rbstree& act_key_range(const Key& key_min, const Key& key_max, const Op& op) { auto ts = node::split_key_range(root, key_min, key_max); std::get<1>(ts)->act(op); return root = node::merge(std::get<0>(ts), node::merge(std::get<1>(ts), std::get<2>(ts))), *this; } base_rbstree& merge(base_rbstree&& t) { return root = node::merge(root, t.root), *this; } base_rbstree split_at(const usize pos) { auto ts = node::split_at(root, pos); return root = ts.first, base_rbstree(ts.second); } std::pair split_range(const usize pos_min, const usize pos_sup) { auto ts = node::split_range(root, pos_min, pos_sup); return root = std::get<0>(ts), std::make_pair(base_rbstree(std::get<1>(ts)), base_rbstree(std::get<2>(ts))); } base_rbstree& erase_at(const usize pos) { auto ts = node::split_at(root, pos), trs = node::split_at(ts.second, 1); return root = node::merge(ts.first, trs.second), *this; } base_rbstree& insert_at(const usize pos, base_rbstree&& t) { auto ts = node::split_at(root, pos); return root = node::merge(node::merge(ts.first, t.root), ts.second), *this; } template base_rbstree split_lower(const Key& key) { auto ts = node::split_lower(root, key); return root = ts.first, base_rbstree(ts.second); } template base_rbstree split_upper(const Key& key) { auto ts = node::split_upper(root, key); return root = ts.first, base_rbstree(ts.second); } template std::pair split_key_range(const Key& key_min, const Key& key_max) { auto ts = node::split_key_range(root, key_min, key_max); return root = std::get<0>(ts), std::make_pair(base_rbstree(std::get<1>(ts)), base_rbstree(std::get<2>(ts))); } base_rbstree& insert(const node& n) { auto ts = node::split_lower(root, n.data().key); return root = node::merge(node::merge(ts.first, new node{n}), ts.second), *this; } std::vector data() { if (empty()) { return std::vector{}; } auto dfs = [&](auto&& self, const node& n) -> std::vector { std::vector ans; if (n.has_left()) { for (auto&& e : self(self, n.left())) { ans.emplace_back(e); } } ans.push_back(n); if (n.has_right()) { for (auto&& e : self(self, n.right())) { ans.emplace_back(e); } } return ans; }; return dfs(dfs, *root); } }; template typename base_rbstree::node base_rbstree::node::empty_node = node{}; template using rbstree = base_rbstree>; template> using mset_rbstree = base_rbstree>; template> using mmap_rbstree = base_rbstree, Comp>>; template using merge_rbstree = base_rbstree>; template using lazy_rbstree = base_rbstree>; class segments { private: using P = std::pair; const usize ceil; std::vector

rs; const usize num; // 区間0は存在しないので、実際は区間1,2,...,num-1 public: segments(const usize sz) : ceil{ceil2(sz)}, rs(ceil << 1, P{0, 0}), num{ceil << 1} { for (usize sz = 1; sz <= ceil; sz <<= 1) { const usize len = ceil / sz; for (usize j = sz; j < (sz << 1); j++) { rs[j] = {len * (j - sz), len * (j - sz + 1)}; } } } std::vector under(usize l, usize r) const { assert(l < r), assert(r <= ceil); std::vector lind, rind; for (l += ceil, r += ceil; l < r; l >>= 1, r >>= 1) { if (l & 1) { lind.push_back(l++); } if (r & 1) { rind.push_back(--r); } } for (; not rind.empty(); rind.pop_back()) { lind.push_back(rind.back()); } return lind; } std::vector over(const usize a) const { assert(a < ceil); std::vector ans; for (usize i = a + ceil; i >= 1; i >>= 1) { ans.push_back(i); } std::reverse(ans.begin(), ans.end()); return ans; } usize max_index() const { return num; } const P& operator[](const usize i) const { assert(i >= 1), assert(i < 2 * ceil); return rs[i]; } }; template struct plus { using element_type = Element; using operator_type = element_type; plus() = delete; static operator_type compose(const operator_type& a, const operator_type& b) { return a + b; } static constexpr operator_type id() { return operator_type{}; } }; template struct sum { using element_type = Element; using value_type = element_type; sum() = delete; static value_type merge(const value_type& a, const value_type& b) { return a + b; } static constexpr value_type id() { return value_type{}; } }; template struct sum_plus { using value_element_type = ValueElement; using operator_element_type = OperatorElement; using value_monoid_type = sum; using operator_monoid_type = plus; using value_type = typename value_monoid_type::value_type; using operator_type = typename operator_monoid_type::operator_type; sum_plus() = delete; template static value_type apply(const operator_type& f, const value_type& x, const Ind l) { return x + static_cast(l) * static_cast(f); } }; int main() { constexpr ull MAX = 1ULL << 40; using node = bbst_node::key_node>, std::less>; using tree = base_splaytree; //using tree = base_rbstree; const auto [n, q] = reads(); const auto m = ceil2(n); auto a = read(n); std::vector sorted(2 * m); segments segs{n}; for (usize i = 1; i < 2 * m; i++) { const auto [l, r] = segs[i]; for (usize j = l; j < std::min(r, n); j++) { sorted[i].insert({a[j], a[j]}); } } ull s = 0; constexpr ull pmask = (1ULL << 16) - 1; constexpr ull vmask = (1ULL << 40) - 1; for (usize i = 0; i < q; i++) { const usize t = read(); if (t == 1) { const usize sp = s & pmask; const ull sv = s & vmask; const auto x = (read() ^ (sp)) - 1; const auto y = (read() ^ sv); const auto inds = segs.over(x); for (const usize i : inds) { auto& lst = sorted[i]; auto [mst, rst] = lst.split_key_range(a[x], a[x]); auto mst2 = mst.split_at(1); mst2.merge(std::move(rst)); lst.merge(std::move(mst2)); lst.insert({y, y}); } a[x] = y; } else { const usize sp = s & pmask; auto l = (read() ^ (sp)), r = (read() ^ (sp)); if (l > r) { std::swap(l, r); } l--; const usize sz = r - l; const auto inds = segs.under(l, r); auto less = [&](const ll x) -> usize { usize ans = 0; for (const usize i : inds) { ans += sorted[i].fold_lower(x).data().sz; } return ans; }; ll inf = -1LL, sup = MAX + 1LL; while (sup - inf > 1) { const ll mid = (inf + sup) / 2LL; (less(mid) < (sz + 1) / 2 ? inf : sup) = mid; } const ll m = inf; ll ans = 0; for (const usize i : inds) { auto& lst = sorted[i]; auto rst = sorted[i].split_lower(m); const usize l = lst.top().data().sz; const usize r = rst.top().data().sz; const ll lsum = (ll)l * m - lst.top().data().merged; const ll rsum = rst.top().data().merged - (ll)r * m; ans += (lsum + rsum); lst.merge(std::move(rst)); } s ^= ans; std::cout << ans << std::endl; } } return 0; }