import std.stdio, std.array, std.string, std.conv, std.algorithm; import std.typecons, std.range, std.random, std.math, std.container; import std.numeric, std.bigint, core.bitop, core.stdc.stdio; immutable long MAX = 2*10^^6+1; immutable uint MOD = 10^^9 + 7; alias mint = ModInt!MOD; void main() { auto comb = new Combinations!MOD(MAX.to!int); int T, N, K; char CPH; scanf("%d\n", &T); foreach(i; 0..T) { scanf("%c(%d,%d)\n", &CPH, &N, &K); if (CPH == 'C') { writeln(comb.nCr(N, K)); } else if (CPH == 'P') { writeln(comb.nPr(N, K)); } else { writeln(comb.nHr(N, K)); } } } struct ModInt(uint mod) { import std.conv : to; uint n; this(int n) { this.n = (n % mod + mod) % mod; } this(long n) { this.n = (n % mod + mod) % mod; } private this(uint n) { this.n = n; } string toString() { return to!string(this.n); } private uint normilize(uint n) const { return n < mod ? n : n - mod; } private ModInt pow(uint n, long x) const { long ret = 1; long a = n; while (x) { if (x & 1) ret = ret * a % mod; a = a * a % mod; x >>= 1; } return ModInt(to!ulong(ret)); } ModInt opBinary(string op : "+")(ModInt rhs) const { return ModInt(normilize(n + rhs.n)); } ModInt opBinary(string op : "-")(ModInt rhs) const { return ModInt(normilize(n + mod - rhs.n)); } ModInt opBinary(string op : "*")(ModInt rhs) const { return ModInt(to!uint(to!long(n) * rhs.n % mod)); } ModInt opBinary(string op : "/")(ModInt rhs) const { return this * pow(rhs.n, mod-2); } ModInt opBinary(string op : "^^")(ModInt rhs) const { return pow(this.n, rhs.n); } ModInt opBinary(string op, T)(T rhs) { ModInt mod_rhs = ModInt(rhs); return opBinary!op(mod_rhs); } ModInt opOpAssign(string op)(ModInt rhs) { return mixin ("this=this"~op~"rhs"); } ModInt opOpAssign(string op, T)(T rhs) { ModInt mod_rhs = ModInt(rhs); return mixin ("this=this"~op~"mod_rhs"); } } class Combinations(uint mod) { alias mint = ModInt!mod; mint[] f; this(int maxval) { auto f = new mint[](maxval); f[0] = f[1] = mint(1); foreach(i; 2..maxval) { f[i] = f[i-1] * i; } } mint nCr(int n, int r) { if (n < r) mint(0); return f[n] / f[n-r] / f[r]; } mint nPr(int n, int r) { if (n < r) return mint(0); return f[n] / f[n-r]; } mint nHr(int n, int r) { if (n == 0 &&r == 0) return mint(1); if (n == 0) return mint(0); return f[n+r-1] / f[n-1] / f[r]; } }