import std.conv, std.functional, std.range, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; } int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); } int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); } // a^-1 (mod 2^64) long modInv(long a) in { assert(a & 1, "modInv: a must be odd"); } do { long b = ((a << 1) + a) ^ 2; b *= 2 - a * b; b *= 2 - a * b; b *= 2 - a * b; b *= 2 - a * b; return b; } // a^-1 (mod m) long modInv(long a, long m) in { assert(m > 0, "modInv: m > 0 must hold"); } do { long b = m, x = 1, y = 0, t; for (; ; ) { t = a / b; a -= t * b; if (a == 0) { assert(b == 1 || b == -1, "modInv: gcd(a, m) != 1"); if (b == -1) y = -y; return (y < 0) ? (y + m) : y; } x -= t * y; t = b / a; b -= t * a; if (b == 0) { assert(a == 1 || a == -1, "modInv: gcd(a, m) != 1"); if (a == -1) x = -x; return (x < 0) ? (x + m) : x; } y -= t * x; } } // 2^-31 a (mod M) long montgomery(long M)(long a) if (1 <= M && M <= 0x7fffffff && (M & 1)) in { assert(0 <= a && a < (M << 31), "montgomery: 0 <= a < 2^31 M must hold"); } do { enum negInvM = -modInv(M) & 0x7fffffff; const b = (a + ((a * negInvM) & 0x7fffffff) * M) >> 31; return (b >= M) ? (b - M) : b; } // FFT on Z / M Z with Montgomery multiplication (x -> 2^31 x) // G: primitive 2^K-th root of unity class FFT(long M, int K, long G) if (is(typeof(montgomery!(M)(0))) && K >= 0 && 0 < G && G < M) { import std.algorithm : swap; import core.bitop : bsf; int n, invN; long[] g; this(int n) in { assert(!(n & (n - 1)), "FFT.this: n must be a power of 2"); assert(4 <= n && n <= 1 << K, "FFT.this: 4 <= n <= 2^K must hold"); } do { this.n = n; this.invN = ((1L << 31) / n) % M; g.length = n + 1; g[0] = (1L << 31) % M; g[1] = (G << 31) % M; foreach (_; 0 .. K - bsf(n)) { g[1] = montgomery!(M)(g[1] * g[1]); } foreach (i; 2 .. n + 1) { g[i] = montgomery!(M)(g[i - 1] * g[1]); } assert(g[0] != g[n >> 1] && g[0] == g[n], "FFT.this: G must be a primitive 2^K-th root of unity"); for (int i = 0, j = 0; i < n >> 1; ++i) { if (i < j) { swap(g[i], g[j]); swap(g[n - i], g[n - j]); } for (int m = n >> 1; (m >>= 1) && !((j ^= m) & m); ) {} } } void fftMontgomery(long[] x, bool inv) in { assert(x.length == n, "FFT.fftMontgomery: |x| = n must hold"); } do { foreach_reverse (h; 0 .. bsf(n)) { const l = 1 << h; foreach (i; 0 .. n >> 1 >> h) { const gI = g[inv ? (n - i) : i]; foreach (j; i << 1 << h .. ((i << 1) + 1) << h) { const t = montgomery!(M)(gI * x[j + l]); if ((x[j + l] = x[j] - t) < 0) { x[j + l] += M; } if ((x[j] += t) >= M) { x[j] -= M; } } } } for (int i = 0, j = 0; i < n; ++i) { if (i < j) { swap(x[i], x[j]); } for (int m = n; (m >>= 1) && !((j ^= m) & m); ) {} } if (inv) { foreach (i; 0 .. n) { x[i] = montgomery!(M)(invN * x[i]); } } } long[] convolution(long[] a, long[] b) in { assert(a.length <= n, "FFT.convolution: |a| <= n must hold"); assert(b.length <= n, "FFT.convolution: |b| <= n must hold"); } do { auto x = new long[n], y = new long[n]; foreach (i; 0 .. a.length) { const t = a[i] % M; x[i] = (((t < 0) ? (t + M) : t) << 31) % M; } foreach (i; 0 .. b.length) { const t = b[i] % M; y[i] = (((t < 0) ? (t + M) : t) << 31) % M; } fftMontgomery(x, false); fftMontgomery(y, false); foreach (i; 0 .. n) { x[i] = montgomery!(M)(x[i] * y[i]); } fftMontgomery(x, true); foreach (i; 0 .. n) { x[i] = montgomery!(M)(x[i]); } return x; } } // P0 P1 P2 > 2^90, P0 + P1 + P2 = 2^32 + 3 enum FFT_P0 = 2013265921L; // 2^27 15 + 1 enum FFT_P1 = 1811939329L; // 2^26 27 + 1 enum FFT_P2 = 469762049L; // 2^26 7 + 1 alias FFT0 = FFT!(FFT_P0, 27, 440564289L); // 31^15 alias FFT1 = FFT!(FFT_P1, 26, 72705542L); // 13^27 alias FFT2 = FFT!(FFT_P2, 26, 2187L); // 3^ 7 // Convolution of a and b (indices mod fft0.n) // modify a and b so that 0 <= a[i] < m, 0 <= b[i] < m long[] convolution(FFT0 fft0, FFT1 fft1, FFT2 fft2, long[] a, long[] b, long m) in { assert(fft0.n == fft1.n && fft0.n == fft2.n, "convolution: fft0.n = fft1.n = fft2.n must hold"); assert(1 <= m && m <= 0x7fffffff, "convolution: 1 <= m < 2^31 must hold"); } do { enum FFT_INV01 = modInv(FFT_P0, FFT_P1); enum FFT_INV012 = modInv(FFT_P0 * FFT_P1, FFT_P2); foreach (i; 0 .. a.length) { if ((a[i] %= m) < 0) { a[i] += m; } } foreach (i; 0 .. b.length) { if ((b[i] %= m) < 0) { b[i] += m; } } const x0 = fft0.convolution(a, b); const x1 = fft1.convolution(a, b); const x2 = fft2.convolution(a, b); auto x = new long[fft0.n]; foreach (i; 0 .. fft0.n) { auto y0 = x0[i] % FFT_P0; auto y1 = (FFT_INV01 * (x1[i] - y0)) % FFT_P1; if (y1 < 0) { y1 += FFT_P1; } auto y2 = (FFT_INV012 * ((x2[i] - y0 - FFT_P0 * y1) % FFT_P2)) % FFT_P2; if (y2 < 0) { y2 += FFT_P2; } x[i] = (y0 + FFT_P0 * y1 + ((FFT_P0 * FFT_P1) % m) * y2) % m; } return x; } struct ModInt(int M_) { alias M = M_; int x; this(ModInt a) { x = a.x; } this(long a) { x = cast(int)(a % M); if (x < 0) x += M; } ref ModInt opAssign(long a) { return (this = ModInt(a)); } ref ModInt opOpAssign(string op)(ModInt a) { static if (op == "+") { x += a.x; if (x >= M) x -= M; } else static if (op == "-") { x -= a.x; if (x < 0) x += M; } else static if (op == "*") { x = cast(int)((cast(long)(x) * a.x) % M); } else static if (op == "/") { this *= a.inv(); } else static assert(false); return this; } ref ModInt opOpAssign(string op)(long a) { static if (op == "^^") { ModInt t2 = this, te = ModInt(1); for (long e = a; e; e >>= 1) { if (e & 1) te *= t2; t2 *= t2; } x = cast(int)(te.x); return this; } else return mixin("this " ~ op ~ "= ModInt(a)"); } ModInt inv() const { int a = x, b = M, y = 1, z = 0, t; for (; ; ) { t = a / b; a -= t * b; if (a == 0) { assert(b == 1 || b == -1); return ModInt(b * z); } y -= t * z; t = b / a; b -= t * a; if (b == 0) { assert(a == 1 || a == -1); return ModInt(a * y); } z -= t * y; } } ModInt opUnary(string op)() const if (op == "-") { return ModInt(-x); } ModInt opBinary(string op, T)(T a) const { return mixin("ModInt(this) " ~ op ~ "= a"); } ModInt opBinaryRight(string op)(long a) const { return mixin("ModInt(a) " ~ op ~ "= this"); } string toString() const { return x.to!string; } } enum MO = 10^^9 + 7; alias Mint = ModInt!MO; enum LIM = 4 * 10^^6; Mint[] inv, fac, invFac; void prepare() { inv = new Mint[LIM]; fac = new Mint[LIM]; invFac = new Mint[LIM]; inv[1] = 1; foreach (i; 2 .. LIM) { inv[i] = -(Mint.M / i) * inv[cast(size_t)(Mint.M % i)]; } fac[0] = invFac[0] = 1; foreach (i; 1 .. LIM) { fac[i] = fac[i - 1] * i; invFac[i] = invFac[i - 1] * inv[i]; } } Mint binom(long n, long k) { if (0 <= k && k <= n) { assert(n < LIM); return fac[cast(size_t)(n)] * invFac[cast(size_t)(k)] * invFac[cast(size_t)(n - k)]; } else { return Mint(0); } } void main() { prepare(); debug { { enum n = 5; auto dp = new long[][][](n, n, n); dp[0][0][0] = 1; foreach (a; 0 .. n) foreach (b; 0 .. n) foreach (c; 0 .. n) { foreach (aa; a .. n) foreach (bb; b .. n) foreach (cc; c .. n) { if (a + b + c < aa + bb + cc) { dp[aa][bb][cc] += dp[a][b][c]; } } } foreach (a; 0 .. n) { writeln(dp[a]); } } foreach (n; 1 .. 10 + 1) { auto a = new long[][](n + 1, n + 1); foreach (i; 1 .. n + 1) { a[i][i] = 1; } foreach (i; 1 .. n + 1) { foreach (j; 1 .. i) { const coef = binom(i, j).x; foreach (k; 0 .. i) { a[i][k] -= coef * a[j][k]; } } } foreach (i; 1 .. n + 1) { // writeln(a[i][1 .. $]); } auto b = new long[n + 1]; foreach (i; 1 .. n + 1) { b[] += a[i][]; } writeln(b[1 .. $]); } } try { for (; ; ) { const X = readInt(); const Y = readInt(); const Z = readInt(); auto f = new Mint[X + Y + Z + 1]; foreach (n; 1 .. X + Y + Z + 1) { f[n] = binom(X + n - 1, n - 1) * binom(Y + n - 1, n - 1) * binom(Z + n - 1, n - 1); } debug { if (X + Y + Z <= 10) { writeln("f = ", f); } } debug { auto ff = f.dup; foreach (n; 1 .. X + Y + Z + 1) { foreach (m; 1 .. n) { ff[n] -= binom(n, m) * ff[m]; } } if (X + Y + Z <= 10) { writeln("ff = ", ff); } } int fftn; for (fftn = 4; fftn <= 2 * (X + Y + Z) + 10; fftn <<= 1) {} auto a = new long[fftn]; auto b = new long[fftn]; foreach (i; 0 .. X + Y + Z + 1) { a[i] = (f[i] * invFac[i]).x; b[i] = ((-1)^^i * invFac[i]).x; } auto res = convolution(new FFT0(fftn), new FFT1(fftn), new FFT2(fftn), a, b, MO); debug { if (X + Y + Z <= 10) { writeln(res); } } Mint ans; foreach (i; 1 .. X + Y + Z + 1) { ans += fac[i] * res[i]; } writeln(ans); } } catch (EOFException e) { } }