#include using namespace std; using int64 = long long; template< typename flow_t > struct FordFulkerson { struct edge { int to; flow_t cap; int rev; bool isrev; int idx; }; vector< vector< edge > > graph; vector< int > used; const flow_t INF; int timestamp; FordFulkerson(int n) : INF(numeric_limits< flow_t >::max()), timestamp(0) { graph.resize(n); used.assign(n, -1); } void add_edge(int from, int to, flow_t cap, int idx = -1) { graph[from].emplace_back((edge) {to, cap, (int) graph[to].size(), false, idx}); graph[to].emplace_back((edge) {from, 0, (int) graph[from].size() - 1, true, idx}); } flow_t dfs(int idx, const int t, flow_t flow) { if(idx == t) return flow; used[idx] = timestamp; for(auto &e : graph[idx]) { if(e.cap > 0 && used[e.to] != timestamp) { flow_t d = dfs(e.to, t, min(flow, e.cap)); if(d > 0) { e.cap -= d; graph[e.to][e.rev].cap += d; return d; } } } return 0; } flow_t max_flow(int s, int t) { flow_t flow = 0; for(flow_t f; (f = dfs(s, t, INF)) > 0; timestamp++) { flow += f; } return flow; } void output() { for(int i = 0; i < graph.size(); i++) { for(auto &e : graph[i]) { if(e.isrev) continue; auto &rev_e = graph[e.to][e.rev]; cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << e.cap + rev_e.cap << ")" << endl; } } } }; int main() { int H, W; cin >> H >> W; vector< vector< int64 > > G(H, vector< int64 >(W)); for(int i = 0; i < H; i++) { for(int j = 0; j < W; j++) cin >> G[i][j]; } vector< int64 > R(H), C(W); for(int i = 0; i < H; i++) cin >> R[i]; for(int i = 0; i < W; i++) cin >> C[i]; int64 sum = accumulate(begin(R), end(R), 0LL) + accumulate(begin(C), end(C), 0LL); vector< int64 > row_sum(H); for(int i = 0; i < H; i++) { for(int j = 0; j < W; j++) row_sum[i] += G[i][j]; } int64 sum_cut = 0; vector< int64 > row_cap(H); for(int i = 0; i < H; i++) { int64 cut = min(R[i], row_sum[i]); row_cap[i] = row_sum[i] - cut; sum_cut += cut; } FordFulkerson< int64 > flow(H + W + 2); int S = H + W; int T = S + 1; for(int i = 0; i < H; i++) { for(int j = 0; j < W; j++) { flow.add_edge(i, H + j, G[i][j]); } } for(int i = 0; i < H; i++) { flow.add_edge(S, i, row_cap[i]); } for(int i = 0; i < W; i++) { flow.add_edge(H + i, T, C[i]); } cout << sum - flow.max_flow(S, T) - sum_cut << endl; }