#include using namespace std; // Define using ll = long long; using ull = unsigned long long; using ld = long double; template using pvector = vector>; template using rpriority_queue = priority_queue, greater>; constexpr const ll dx[4] = {1, 0, -1, 0}; constexpr const ll dy[4] = {0, 1, 0, -1}; constexpr const ll MOD = 1e9 + 7; constexpr const ll mod = 998244353; constexpr const ll INF = 1LL << 60; constexpr const ll inf = 1 << 30; constexpr const char rt = '\n'; constexpr const char sp = ' '; #define mp make_pair #define mt make_tuple #define pb push_back #define eb emplase_back #define elif else if #define all(a, v, ...) \ ([&](decltype((v)) w) { return (a)(begin(w), end(w), ##__VA_ARGS__); })(v) #define fi first #define se second template bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template bool chmin(T &a, const T &b) { if (a > b) { a = b; return 1; } return 0; } // Debug #define debug(...) \ { \ cerr << __LINE__ << ": " << #__VA_ARGS__ << " = "; \ for (auto &&X : {__VA_ARGS__}) cerr << "[" << X << "] "; \ cerr << rt; \ } #define dump(a, h, w) \ { \ cerr << __LINE__ << ": " << #a << " = [" << rt; \ rep(i, h) { \ rep(j, w) cerr << a[i][j] << sp; \ cerr << rt; \ } \ cerr << "]" << rt; \ } #define vdump(a, n) \ { \ cerr << __LINE__ << ": " << #a << " = ["; \ rep(i, n) cerr << a[i] << (i == n - 1 ? rt : sp); \ cerr << "]" << rt; \ } // Loop #define inc(i, a, n) for (ll i = (a), _##i = (n); i <= _##i; ++i) #define dec(i, a, n) for (ll i = (a), _##i = (n); i >= _##i; --i) #define rep(i, n) for (ll i = 0, _##i = (n); i < _##i; ++i) #define each(i, a) for (auto &&i : a) // Stream #define fout(n) cout << fixed << setprecision(n) struct io { io() { cin.tie(nullptr), ios::sync_with_stdio(false); } } io; // Speed #pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") // Math inline constexpr ll gcd(const ll a, const ll b) { return b ? gcd(b, a % b) : a; } inline constexpr ll lcm(const ll a, const ll b) { return a / gcd(a, b) * b; } inline constexpr ll modulo(const ll n, const ll m = MOD) { ll k = n % m; return k + m * (k < 0); } inline constexpr ll chmod(ll &n, const ll m = MOD) { n %= m; return n += m * (n < 0); } inline constexpr ll mpow(ll a, ll n, const ll m = MOD) { ll r = 1; rep(i, 64) { if (n & (1LL << i)) r *= a; chmod(r, m); a *= a; chmod(a, m); } return r; } inline ll inv(const ll n, const ll m = MOD) { ll a = n, b = m, x = 1, y = 0; while (b) { ll t = a / b; a -= t * b; swap(a, b); x -= t * y; swap(x, y); } return modulo(x, m); } template struct mi { inline constexpr ll modulo(const ll n, const ll m) const noexcept { ll k = n % m; return k + m * (k < 0); } ll num; inline constexpr mi() noexcept : num() { num = 0; } inline constexpr mi(const int n) noexcept : num() { num = modulo(n, mod); } inline constexpr mi(const ll n) noexcept : num() { num = modulo(n, mod); } inline constexpr mi inv() const noexcept { ll a = num, b = mod, x = 1, y = 0; while (b) { ll t = a / b; a -= t * b; swap(a, b); x -= t * y; swap(x, y); } return mi(x); } inline constexpr mi inv(ll n) const noexcept { ll a = n, b = mod, x = 1, y = 0; while (b) { ll t = a / b; a -= t * b; swap(a, b); x -= t * y; swap(x, y); } return mi(x); } inline constexpr mi inv(const mi m) const noexcept { return inv(m.num); } inline constexpr mi operator+() const noexcept { return mi(num); } inline constexpr mi operator+(const int n) const noexcept { return mi(num + n); } inline constexpr mi operator+(const ll n) const noexcept { return mi(num + n); } inline constexpr mi operator+(const mi m) const noexcept { return mi(num + m.num); } inline constexpr mi operator-() const noexcept { return -num; } inline constexpr mi operator-(const int n) const noexcept { return mi(num - n); } inline constexpr mi operator-(const ll n) const noexcept { return mi(num - n); } inline constexpr mi operator-(const mi m) const noexcept { return mi(num - m.num); } inline constexpr mi operator*(const int n) const noexcept { return mi(num * n); } inline constexpr mi operator*(const ll n) const noexcept { return mi(num * n); } inline constexpr mi operator*(const mi m) const noexcept { return mi(num * m); } inline constexpr mi operator/(const int n) const noexcept { return mi(num * (ll) inv(n)); } inline constexpr mi operator/(const ll n) const noexcept { return mi(num * (ll) inv(n)); } inline constexpr mi operator/(const mi m) const noexcept { return mi(num * (ll) inv(m)); } inline constexpr mi &operator=(const int n) noexcept { num = modulo(n, mod); return *this; } inline constexpr mi &operator=(const ll n) noexcept { num = modulo(n, mod); return *this; } inline constexpr mi &operator=(const mi m) noexcept { num = m.num; return *this; } inline constexpr mi &operator+=(const int n) noexcept { num = modulo(num + n, mod); return *this; } inline constexpr mi &operator+=(const ll n) noexcept { num = modulo(num + n, mod); return *this; } inline constexpr mi &operator+=(const mi m) noexcept { num = modulo(num + m.num, mod); return *this; } inline constexpr mi &operator++() noexcept { num = modulo(num + 1, mod); return *this; } inline constexpr mi operator++(int) noexcept { mi &pre = *this; num = modulo(num + 1, mod); return pre; } inline constexpr mi &operator-=(const int n) noexcept { num = modulo(num - n, mod); return *this; } inline constexpr mi &operator-=(const ll n) noexcept { num = modulo(num - n, mod); return *this; } inline constexpr mi &operator-=(const mi m) noexcept { num = modulo(num - m.num, mod); return *this; } inline constexpr mi &operator--() noexcept { num = modulo(num - 1, mod); return *this; } inline constexpr mi operator--(int) noexcept { mi &pre = *this; num = modulo(num - 1, mod); return pre; } inline constexpr mi &operator*=(const int n) noexcept { num = modulo(num * n, mod); return *this; } inline constexpr mi &operator*=(const ll n) noexcept { num = modulo(num * n, mod); return *this; } inline constexpr mi &operator*=(const mi m) noexcept { num = modulo(num * m.num, mod); return *this; } inline constexpr mi &operator/=(const int n) noexcept { num = modulo(num * (ll) inv(n), mod); return *this; } inline constexpr mi &operator/=(const ll n) noexcept { num = modulo(num * (ll) inv(n), mod); return *this; } inline constexpr mi &operator/=(const mi m) noexcept { num = modulo(num * (ll) inv(m), mod); return *this; } inline constexpr bool operator==(const int n) const noexcept { return num == modulo(n, mod); } inline constexpr bool operator==(const ll n) const noexcept { return num == modulo(n, mod); } inline constexpr bool operator==(const mi m) const noexcept { return num == m.num; } inline constexpr bool operator!=(const int n) const noexcept { return num != modulo(n, mod); } inline constexpr bool operator!=(const ll n) const noexcept { return num != modulo(n, mod); } inline constexpr bool operator!=(const mi m) const noexcept { return num != m.num; } constexpr operator int() const noexcept { return num; } constexpr operator ll() const noexcept { return num; } friend std::istream &operator>>(std::istream &, const mi<> &); friend std::ostream &operator<<(std::ostream &, const mi<> &); }; template inline constexpr mi operator+(const int n, const mi m) noexcept { return mi(n + m.num); } template inline constexpr mi operator+(const ll n, const mi m) noexcept { return mi(n + m.num); } template inline constexpr mi operator-(const int n, const mi m) noexcept { return mi(n - m.num); } template inline constexpr mi operator-(const ll n, const mi m) noexcept { return mi(n - m.num); } template inline constexpr mi operator*(const int n, const mi m) noexcept { return mi(n * m.num); } template inline constexpr mi operator*(const ll n, const mi m) noexcept { return mi(n * m.num); } template inline constexpr mi operator/(const int n, const mi m) noexcept { return mi(n * (ll) m.inv()); } template inline constexpr mi operator/(const ll n, const mi m) noexcept { return mi(n * (ll) m.inv()); } inline constexpr mi operator""_m(ull n) { return mi((ll) n); } template inline constexpr mi pow(mi m, ll n) noexcept { mi r = mi(1); rep(i, 64) { if (n & (1LL << i)) r *= m; m *= m; } return r; } template istream &operator>>(istream &is, mi &m) { is >> m.num; return is; } template ostream &operator<<(ostream &is, mi &m) { is << (ll) m; return is; } template struct modmath { ll max; vector> fac, inv; modmath() : max(1 << 20), fac(max + 1), inv(max + 1) { fac[0] = mi(1); rep(i, max) fac[i + 1] = fac[i] * (i + 1); inv[max] = fac[max].inv(); dec(i, max - 1, 0) inv[i] = inv[i + 1] * (i + 1); } modmath(ll n) : max(n), fac(n + 1), inv(n + 1) { fac[0] = 1; rep(i, n) fac[i + 1] = fac[i] * (i + 1); inv[n] = 1 / fac[n]; dec(i, n - 1, 0) inv[i] = inv[i + 1] * (i + 1); } inline mi fact(ll n) { if (n < 0) return mi(0); return fac[n]; } inline mi perm(ll n, ll r) { if (r < 0 || n < r) return mi(0); return fac[n] * inv[n - r]; } inline mi comb(ll n, ll r) { if (r < 0 || n < r) return mi(0); return fac[n] * inv[r] * inv[n - r]; } inline mi nHr(ll n, ll r) { return comb(n + r - 1, n - 1); } }; namespace FastFourierTransform { using real = long double; struct C { real x, y; C() : x(0), y(0) {} C(real x, real y) : x(x), y(y) {} inline C operator+(const C &c) const { return C(x + c.x, y + c.y); } inline C operator-(const C &c) const { return C(x - c.x, y - c.y); } inline C operator*(const C &c) const { return C(x * c.x - y * c.y, x * c.y + y * c.x); } inline C conj() const { return C(x, -y); } }; const real PI = acosl(-1); int base = 1; vector rts = {{0, 0}, {1, 0}}; vector rev = {0, 1}; void ensure_base(int nbase) { if (nbase <= base) return; rev.resize(1 << nbase); rts.resize(1 << nbase); for (int i = 0; i < (1 << nbase); i++) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } while (base < nbase) { real angle = PI * 2.0 / (1 << (base + 1)); for (int i = 1 << (base - 1); i < (1 << base); i++) { rts[i << 1] = rts[i]; real angle_i = angle * (2 * i + 1 - (1 << base)); rts[(i << 1) + 1] = C(cos(angle_i), sin(angle_i)); } ++base; } } void fft(vector &a, int n) { assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for (int i = 0; i < n; i++) { if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for (int k = 1; k < n; k <<= 1) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; j++) { C z = a[i + j + k] * rts[j + k]; a[i + j + k] = a[i + j] - z; a[i + j] = a[i + j] + z; } } } } vector multiply(const vector &a, const vector &b) { int need = (int) a.size() + (int) b.size() - 1; int nbase = 1; while ((1 << nbase) < need) nbase++; ensure_base(nbase); int sz = 1 << nbase; vector fa(sz); for (int i = 0; i < sz; i++) { int x = (i < (int) a.size() ? a[i] : 0); int y = (i < (int) b.size() ? b[i] : 0); fa[i] = C(x, y); } fft(fa, sz); C r(0, -0.25 / (sz >> 1)), s(0, 1), t(0.5, 0); for (int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C z = (fa[j] * fa[j] - (fa[i] * fa[i]).conj()) * r; fa[j] = (fa[i] * fa[i] - (fa[j] * fa[j]).conj()) * r; fa[i] = z; } for (int i = 0; i < (sz >> 1); i++) { C A0 = (fa[i] + fa[i + (sz >> 1)]) * t; C A1 = (fa[i] - fa[i + (sz >> 1)]) * t * rts[(sz >> 1) + i]; fa[i] = A0 + A1 * s; } fft(fa, sz >> 1); vector ret(need); for (int i = 0; i < need; i++) { ret[i] = llround(i & 1 ? fa[i >> 1].y : fa[i >> 1].x); } return ret; } }; // namespace FastFourierTransform template struct ArbitraryModConvolution { using real = FastFourierTransform::real; using C = FastFourierTransform::C; ArbitraryModConvolution() = default; vector multiply(const vector &a, const vector &b, int need = -1) { if (need == -1) need = a.size() + b.size() - 1; int nbase = 0; while ((1 << nbase) < need) nbase++; FastFourierTransform::ensure_base(nbase); int sz = 1 << nbase; vector fa(sz); for (int i = 0; i < a.size(); i++) { fa[i] = C(a[i].num & ((1 << 15) - 1), a[i].num >> 15); } fft(fa, sz); vector fb(sz); if (a == b) { fb = fa; } else { for (int i = 0; i < b.size(); i++) { fb[i] = C(b[i].num & ((1 << 15) - 1), b[i].num >> 15); } fft(fb, sz); } real ratio = 0.25 / sz; C r2(0, -1), r3(ratio, 0), r4(0, -ratio), r5(0, 1); for (int i = 0; i <= (sz >> 1); i++) { int j = (sz - i) & (sz - 1); C a1 = (fa[i] + fa[j].conj()); C a2 = (fa[i] - fa[j].conj()) * r2; C b1 = (fb[i] + fb[j].conj()) * r3; C b2 = (fb[i] - fb[j].conj()) * r4; if (i != j) { C c1 = (fa[j] + fa[i].conj()); C c2 = (fa[j] - fa[i].conj()) * r2; C d1 = (fb[j] + fb[i].conj()) * r3; C d2 = (fb[j] - fb[i].conj()) * r4; fa[i] = c1 * d1 + c2 * d2 * r5; fb[i] = c1 * d2 + c2 * d1; } fa[j] = a1 * b1 + a2 * b2 * r5; fb[j] = a1 * b2 + a2 * b1; } fft(fa, sz); fft(fb, sz); vector ret(need); for (int i = 0; i < need; i++) { ll aa = llround(fa[i].x); ll bb = llround(fb[i].x); ll cc = llround(fa[i].y); aa = T(aa).num, bb = T(bb).num, cc = T(cc).num; ret[i] = aa + (bb << 15) + (cc << 30); } return ret; } }; // thanks to ei1333 signed main() { ll n, x, y, z; cin >> x >> y >> z; n = x + y + z; if (n == 0) return puts("1") & 0; mi<> res; vector> a(n), b(n), A035317; modmath<> m(1 << 21); #define M(i) \ (m.comb(x + i - 1, x) * m.comb(y + i - 1, y) * m.comb(z + i - 1, z)) rep(i, n) a[i] = (i & 1 ? -1 : 1) / m.fact(i); rep(i, n) b[i] = m.fact(n - i); ArbitraryModConvolution> FFT; A035317 = FFT.multiply(a, b); rep(i, n) res += M(n - i) * A035317[i] / m.fact(n - i); cout << res << rt; } // -g -D_GLIBCXX_DEBUG -fsanitize=undefined