#include #define REP(i, n) for (int i = 0; (i) < (int)(n); ++ (i)) #define REP3(i, m, n) for (int i = (m); (i) < (int)(n); ++ (i)) #define REP_R(i, n) for (int i = (int)(n) - 1; (i) >= 0; -- (i)) #define REP3R(i, m, n) for (int i = (int)(n) - 1; (i) >= (int)(m); -- (i)) #define ALL(x) std::begin(x), std::end(x) using namespace std; /** * @brief a dual segment tree * @tparam Monoid (commutativity is not required) */ template struct dual_segment_tree { typedef typename Monoid::value_type value_type; const Monoid mon; int n; std::vector f; dual_segment_tree() = default; dual_segment_tree(int n_, const Monoid & mon_ = Monoid()) : mon(mon_) { n = 1; while (n < n_) n *= 2; f.resize(2 * n - 1, mon.unit()); } value_type point_get(int i) { // 0-based assert (0 <= i and i < n); value_type acc = mon.unit(); for (i += n; i > 0; i /= 2) { // 1-based acc = mon.mult(f[i - 1], acc); } return acc; } void range_apply(int l, int r, value_type g) { // 0-based, [l, r) assert (0 <= l and l <= r and r <= n); range_apply(0, 0, n, l, r, g); } void range_apply(int i, int il, int ir, int l, int r, value_type g) { if (l <= il and ir <= r) { // 0-based f[i] = mon.mult(g, f[i]); } else if (ir <= l or r <= il) { // nop } else { range_apply(2 * i + 1, il, (il + ir) / 2, 0, n, f[i]); range_apply(2 * i + 2, (il + ir) / 2, ir, 0, n, f[i]); f[i] = mon.unit(); range_apply(2 * i + 1, il, (il + ir) / 2, l, r, g); range_apply(2 * i + 2, (il + ir) / 2, ir, l, r, g); } } }; template struct right_monoid { // typedef std::optional value_type; typedef std::pair value_type; value_type unit() const { return std::make_pair(false, T()); } value_type mult(value_type a, value_type b) const { return b.first ? b : a; } }; int main() { int n, m; cin >> n >> m; dual_segment_tree > segtree(n); while (m --) { int l, r; char x; cin >> l >> r >> x; -- l; segtree.range_apply(l, r, make_pair(true, x)); } int y = 0; int k = 0; int c = 0; REP (i, n) { auto x = segtree.point_get(i); if (x.first) { if (x.second == 'Y') ++ y; if (x.second == 'K') ++ k; if (x.second == 'C') ++ c; } } cout << y << ' ' << k << ' ' << c << endl; return 0; }