import java.util.Arrays; import java.util.Scanner; class Main { public static void main(String[] args) { new Main().run(); } int MAX = 3123456; long[] fac = new long[MAX]; long[] ifac = new long[MAX]; long[] inv = new long[MAX]; long[] pw2 = new long[MAX]; { long MOD = (long) 1e9 + 7; fac[0] = fac[1] = ifac[0] = ifac[1] = inv[0] = inv[1] = pw2[0] = 1; pw2[1] = 2; for (int i = 2; i < fac.length; ++i) { fac[i] = i * fac[i - 1] % MOD; inv[i] = MOD - inv[(int) (MOD % i)] * (MOD / i) % MOD; ifac[i] = inv[i] * ifac[i - 1] % MOD; pw2[i] = 2 * pw2[i - 1] % MOD; } } void run() { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); //long curTime=System.currentTimeMillis(); //for(int N=202020;N<=202020;++N) System.out.println(solve(N, (long) 1e9 + 7)); //System.out.println(System.currentTimeMillis()-curTime); } long comb(int n, int k, long mod) { return fac[n] * ifac[k] % mod * ifac[n - k] % mod; } long solve(int N, long mod0) { long[] cos0=new long[N/2+5]; long[] sin0=new long[N/2+5]; for(int i=0;i> level, mod); int n = Integer.highestOneBit(2 * degree) << 1; long[] roots = new long[level]; long[] iroots = new long[level]; roots[0] = omega; iroots[0] = inv(omega, mod); for (int i = 1; i < level; ++i) { roots[i] = roots[i - 1] * roots[i - 1] % mod; iroots[i] = iroots[i - 1] * iroots[i - 1] % mod; } a = Arrays.copyOf(a, n); b = Arrays.copyOf(b, n); a = fft(a, false, mod, roots, iroots); b = fft(b, false, mod, roots, iroots); for (int i = 0; i < n; ++i) a[i] = a[i] * b[i] % mod; a = fft(a, true, mod, roots, iroots); long inv = inv(n, mod); for (int i = 0; i < n; ++i) { a[i] = a[i] * inv % mod; } return a; } long[] fft(long[] a, boolean inv, long mod, long[] roots, long[] iroots) { int n = a.length; int c = 0; for (int i = 1; i < n; ++i) { for (int j = n >> 1; j > (c ^= j); j >>= 1) ; if (c > i) { long d = a[i]; a[i] = a[c]; a[c] = d; } } int level = Long.numberOfTrailingZeros(mod - 1); for (int i = 1; i < n; i *= 2) { long w; if (!inv) w = roots[level - Integer.numberOfTrailingZeros(i) - 1]; else w = iroots[level - Integer.numberOfTrailingZeros(i) - 1]; for (int j = 0; j < n; j += 2 * i) { long wn = 1; for (int k = 0; k < i; ++k) { long u = a[j + k]; long v = a[j + k + i] * wn % mod; a[j + k] = u + v; a[j + k + i] = u - v; if (a[j + k] >= mod) a[j + k] -= mod; if (a[j + k + i] < 0) a[j + k + i] += mod; wn = wn * w % mod; } } } return a; } long inv(long a, long mod) { a %= mod; if (a < 0) a += mod; if (a == 0) { throw new AssertionError(); // return 1; } long b = mod; long p = 1, q = 0; while (b > 0) { long c = a / b; long d; d = a; a = b; b = d % b; d = p; p = q; q = d - c * q; } long ret = p < 0 ? (p + mod) : p; return ret; } long garner(long[] x, long[] mod, long mod0) { assert x.length == mod.length; int n = x.length; long[] gamma = new long[n]; for (int i = 0; i < n; i++) { long prod = 1; for (int j = 0; j < i; j++) { prod = prod * mod[j] % mod[i]; } gamma[i] = inv(prod, mod[i]); } long[] v = new long[n]; v[0] = x[0]; for (int i = 1; i < n; i++) { long tmp = v[i - 1]; for (int j = i - 2; j >= 0; j--) { tmp = (tmp * mod[j] + v[j]) % mod[i]; } v[i] = (x[i] - tmp) * gamma[i] % mod[i]; while (v[i] < 0) v[i] += mod[i]; } long ret = 0; for (int i = v.length - 1; i >= 0; i--) { ret = (ret * mod[i] + v[i]) % mod0; } return ret; } long pow(long a, long n, long mod) { long ret = 1; for (; n > 0; n >>= 1, a = a * a % mod) { if (n % 2 == 1) ret = ret * a % mod; } return ret; } void tr(Object... objects) { System.out.println(Arrays.deepToString(objects)); } }