use std::io::Read; fn mod_pow(r: u64, mut n: u64, p: u64) -> u64 { assert!(r < p); let mut t = 1; let mut s = r; while n > 0 { if n & 1 == 1 { t = t * s % p; } s = s * s % p; n >>= 1; } t } fn inv(a: u64, p: u64) -> u64 { assert!(0 < a && a < p); mod_pow(a, p - 2, p) } fn log(x: u64, a: u64, p: u64) -> u64 { assert!(0 < x && x < p && a < p); let sq = (p as f64).sqrt() as u64 + 1; let mut map = std::collections::HashMap::new(); for i in (0..sq).rev() { map.insert(a * mod_pow(inv(x, p), i, p) % p, i); } let mut k = 1; let x = mod_pow(x, sq, p); let mut ans = p; for i in 0..sq { if let Some(&v) = map.get(&k) { let v = (i * sq + v) % (p - 1); ans = std::cmp::min(ans, v); } k = k * x % p; } ans } type M = [[u64; 2]; 2]; fn matmul(a: &M, b: &M, p: u64) -> M { let mut c = [[0; 2]; 2]; for (c, a) in c.iter_mut().zip(a.iter()) { for (a, b) in a.iter().zip(b.iter()) { for (c, b) in c.iter_mut().zip(b.iter()) { *c = (*c + *a * *b) % p; } } } c } fn matmul_s(a: &M, x: u64, p: u64) -> M { let mut c = [[0; 2]; 2]; for (c, a) in c.iter_mut().zip(a.iter()) { for (c, a) in c.iter_mut().zip(a.iter()) { *c = *a * x % p; } } c } fn mat_pow(a: &M, mut n: u64, p: u64) -> M { let mut t = [[0; 2]; 2]; t[0][0] = 1; t[1][1] = 1; let mut s = a.clone(); while n > 0 { if n & 1 == 1 { t = matmul(&t, &s, p); } s = matmul(&s, &s, p); n >>= 1; } t } /* * https://twitter.com/maspy_stars/status/1205499459993362432 * を参考に * A^2 = tr(A)A - det(A)I なので * det(A) == 0 のときはA^n = (tr(A))^(n - 1)A なので適当に離散対数を解く * det(A) != 0 のときはA^n = B から(A^r)(A^qk) = B, det(A^r) = det(B), det(A^q) = 1 * となるようなq,rを求める。 * A をA^q, B をBA^(-r)と置き換えて * A^n = B , det(A) = det(B) = 1 が解ければ良い * F_p云々はよくわからないがA^n = x * A + y * I とかけることと * detA = 1 の条件から x^2 + tr(A)xy + y^2 = 1 (mod p) * という関係式が立ってxに対してyが高々2通りになることから2p程度で抑えられる? * */ fn run() { let mut s = String::new(); std::io::stdin().read_to_string(&mut s).unwrap(); let mut it = s.trim().split_whitespace(); let p: u64 = it.next().unwrap().parse().unwrap(); let mut a: M = [[0; 2]; 2]; let mut b: M = [[0; 2]; 2]; for i in 0..2 { for j in 0..2 { a[i][j] = it.next().unwrap().parse().unwrap(); } } for i in 0..2 { for j in 0..2 { b[i][j] = it.next().unwrap().parse().unwrap(); } } if a == b { println!("1"); return; } let det_a = (a[0][0] * a[1][1] % p + p - a[0][1] * a[1][0] % p) % p; if det_a == 0 { let x = (a[0][0] + a[1][1]) % p; if x == 0 { if b == [[0; 2]; 2] { println!("2"); } else { println!("-1"); } return; } let mut y = p; for i in 0..2 { for j in 0..2 { if a[i][j] != 0 { let m = log(x, b[i][j] * inv(a[i][j], p) % p, p); y = std::cmp::min(y, m); } } } if y < p && b == matmul_s(&a, mod_pow(x, y, p), p) { println!("{}", y + 1); } else { println!("-1"); } } else { let det_b = (b[0][0] * b[1][1] % p + p - b[0][1] * b[1][0] % p) % p; if det_b == 0 { println!("-1"); return; } let v = log(det_a, det_b, p); if v >= p { println!("-1"); return; } let ia = matmul_s(&[[a[1][1], (p - a[0][1]) % p], [(p - a[1][0]) % p, a[0][0]]], inv(det_a, p), p); let b = matmul(&b, &mat_pow(&ia, v, p), p); assert!(b[0][0] * b[1][1] % p == (b[0][1] * b[1][0] + 1) % p); let mut phi = p - 1; let mut factor = vec![]; for k in 2.. { if k * k > phi { if phi > 1 { factor.push(phi); } break; } if phi % k == 0 { factor.push(k); while phi % k == 0 { phi /= k; } } } let mut phi = p - 1; for &f in &factor { while phi % f == 0 && mod_pow(det_a, phi / f, p) == 1 { phi /= f; } } let phi = phi; let a = mat_pow(&a, phi, p); assert!(a[0][0] * a[1][1] % p == (a[0][1] * a[1][0] + 1) % p); let ia = [[a[1][1], (p - a[0][1]) % p], [(p - a[1][0]) % p, a[0][0]]]; assert!(matmul(&a, &ia, p) == [[1, 0], [0, 1]]); let mut map = std::collections::HashMap::new(); let sq = ((2 * p) as f64).sqrt() as u64 + 1; let mut m = matmul(&b, &mat_pow(&ia, sq - 1, p), p); for i in (0..sq).rev() { map.insert(m, i); m = matmul(&m, &a, p); } let mut k = [[1, 0], [0, 1]]; let x = mat_pow(&a, sq, p); let mut ans = sq * sq; for i in 0..(sq + 1) { if let Some(&y) = map.get(&k) { ans = std::cmp::min(ans, sq * i + y); } k = matmul(&k, &x, p); } if ans < sq * sq { let ans = phi.checked_mul(ans).expect("overflow") + v; println!("{}", ans); } else { println!("-1"); } } } fn main() { run(); }