#include using namespace std; using lint = long long int; using pint = pair; using plint = pair; struct fast_ios { fast_ios(){ cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_; #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((lint)(x).size()) #define POW2(n) (1LL << (n)) #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i=i##_begin_;i--) #define REP(i, n) FOR(i,0,n) #define IREP(i, n) IFOR(i,0,n) template void ndarray(vector &vec, int len) { vec.resize(len); } template void ndarray(vector &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); } template bool mmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; } template bool mmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; } template pair operator+(const pair &l, const pair &r) { return make_pair(l.first + r.first, l.second + r.second); } template pair operator-(const pair &l, const pair &r) { return make_pair(l.first - r.first, l.second - r.second); } template istream &operator>>(istream &is, vector &vec){ for (auto &v : vec) is >> v; return is; } ///// This part below is only for debug, not used ///// template ostream &operator<<(ostream &os, const vector &vec){ os << "["; for (auto v : vec) os << v << ","; os << "]"; return os; } template ostream &operator<<(ostream &os, const deque &vec){ os << "deq["; for (auto v : vec) os << v << ","; os << "]"; return os; } template ostream &operator<<(ostream &os, const set &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_set &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const multiset &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_multiset &vec){ os << "{"; for (auto v : vec) os << v << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const pair &pa){ os << "(" << pa.first << "," << pa.second << ")"; return os; } template ostream &operator<<(ostream &os, const map &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } template ostream &operator<<(ostream &os, const unordered_map &mp){ os << "{"; for (auto v : mp) os << v.first << "=>" << v.second << ","; os << "}"; return os; } #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl; ///// END ///// /* Convex Hull Trick Implementation Idea: */ using T_CHT = lint; using mpint = lint; struct ConvexHullTrick { static const T_CHT T_MIN = numeric_limits::lowest() + 1; struct Line { T_CHT a, b; // y = ax + b mutable pair rp; // (numerator, denominator) `x` coordinate of the crossing point with next line Line(T_CHT a, T_CHT b) : a(a), b(b), rp(T_MIN, T_MIN) {} static pair cross(const Line &ll, const Line &lr) { return make_pair(ll.b - lr.b, lr.a - ll.a); // `ll.a < lr.a` is assumed implicitly } bool operator<(const Line &r) const { if (b == T_MIN) { if (r.rp.first == T_MIN) return true; else return a * r.rp.second < r.rp.first; } else if (r.b == T_MIN) { if (rp.first == T_MIN) return false; else return !(r.a * rp.second < rp.first); } else return a < r.a; } }; struct Lines : multiset { bool flg_min; // true iff for minimization inline bool isNeedless(iterator itr) { if (size() == 1) return false; auto nxt = next(itr); if (itr == begin()) return itr->a == nxt->a and itr->b <= nxt->b; else { auto prv = prev(itr); if (nxt == end()) return itr->a == prv->a and itr->b <= prv->b; // Prevent overflow else return mpint(prv->b - itr->b) * (nxt->a - itr->a) >= mpint(itr->b - nxt->b) * (itr->a - prv->a); } } void add_line(T_CHT a, T_CHT b) { if (flg_min) a = -a, b = -b; auto itr = insert({a, b}); if (isNeedless(itr)) erase(itr); else { while (next(itr) != end() and isNeedless(next(itr))) { erase(next(itr)); } while (itr != begin() and isNeedless(prev(itr))) { erase(prev(itr)); } if (next(itr) != end()) { itr->rp = Line::cross(*itr, *next(itr)); } if (itr != begin()) { prev(itr)->rp = Line::cross(*prev(itr), *itr); } } } Lines(bool is_minimizer): flg_min(is_minimizer) {} pair get(T_CHT x) { auto itr = lower_bound({x, T_MIN}); T_CHT retval = T_MIN, reta = T_MIN; if (itr != end()) { retval = itr->a * x + itr->b; reta = itr->a; } if (itr != begin()) { T_CHT tmp = prev(itr)->a * x + prev(itr)->b; if (tmp >= retval) { retval = tmp; reta = max(reta, prev(itr)->a); } } return make_pair(flg_min ? -retval : retval, flg_min ? -reta : reta); } }; Lines lines; ConvexHullTrick(bool is_minimizer) : lines(is_minimizer) {} void add_line(T_CHT a, T_CHT b) { lines.add_line(a, b); } // Add y = ax + b pair get(T_CHT x) { return lines.get(x); } void add_convex_parabola(T_CHT c, T_CHT a, T_CHT b) { add_line(-2 * c * a, c * a * a + b); } // Add y = c(x - a)^2 + b T_CHT parabola_lower_bound(T_CHT c, T_CHT x) { return lines.get(x).first + c * x * x; } }; const T_CHT ConvexHullTrick::T_MIN; int main() { int N; cin >> N; vector A(N); cin >> A; vector cht(N + 1, true); int x = 0; cht[0].add_convex_parabola(1, x, 0); REP(i, N) { IREP(d, i + 1) { lint v = cht[d].parabola_lower_bound(1, x); cht[d + 1].add_convex_parabola(1, x + A[i], v); } x += A[i]; } IREP(d, N) { lint v = cht[d].parabola_lower_bound(1, x); cout << v << endl; } }