#ifdef LOCAL #define _GLIBCXX_DEBUG #define __clock__ #else #pragma GCC optimize("Ofast") // #define NDEBUG #endif // #define __buffer_check__ #define __precision__ 10 #define iostream_untie true #define debug_stream std::cerr #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #define odd(n) ((n) & 1) #define even(n) (not __odd(n)) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(n) #define __clz64(n) __builtin_clzll(n) #define __ctz32(n) __builtin_ctz(n) #define __ctz64(n) __builtin_ctzll(n) using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t; using pii = std::pair; using pll = std::pair; template using heap = std::priority_queue; template using rheap = std::priority_queue, std::greater>; template using hashset = std::unordered_set; template using hashmap = std::unordered_map; namespace setting { using namespace std::chrono; system_clock::time_point start_time, end_time; long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast(end_time - start_time).count(); } void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; } void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; } struct setupper { setupper() { if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(__precision__); #ifdef stderr_path if(freopen(stderr_path, "a", stderr)) { std::cerr << std::fixed << std::setprecision(__precision__); } #endif #ifdef stdout_path if(not freopen(stdout_path, "w", stdout)) { freopen("CON", "w", stdout); debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdout file.\n"; } std::cout << ""; #endif #ifdef stdin_path if(not freopen(stdin_path, "r", stdin)) { freopen("CON", "r", stdin); debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdin file.\n"; } #endif #ifdef LOCAL debug_stream << "----- stderr at LOCAL -----\n\n"; atexit(print_elapsed_time); #endif #ifdef __buffer_check__ atexit(buffer_check); #endif #if defined(__clock__) || defined(LOCAL) start_time = system_clock::now(); #endif } } __setupper; // struct setupper } // namespace setting #ifdef __clock__ class { std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built = false; public: void build(int crt_ln, const std::string &crt_func) { is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func; else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n"; } void get(int crt_ln, const std::string &crt_func) { if(is_built) { std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now()); long long diff = std::chrono::duration_cast(crt_pt - last_pt).count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n"; } } } myclock; // unnamed class #define build_clock() myclock.build(__LINE__, __func__) #define set_clock() myclock.set(__LINE__, __func__) #define get_clock() myclock.get(__LINE__, __func__) #else #define build_clock() ((void)0) #define set_clock() ((void)0) #define get_clock() ((void)0) #endif namespace std { // hash template size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template struct hash> { size_t operator()(pair const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template ::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc::apply(seed, t), get(t)); } }; template struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template struct hash> { size_t operator()(tuple const &t) const { return tuple_hash_calc>::apply(0, t); } }; // iostream template istream &operator>>(istream &is, pair &p) { return is >> p.first >> p.second; } template ostream &operator<<(ostream &os, const pair &p) { return os << p.first << ' ' << p.second; } template struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis::apply(is, t); return is >> get(t); } }; template struct tupleis::max()> { static istream &apply(istream &is, tuple_t &t) { return is; } }; template istream &operator>>(istream &is, tuple &t) { return tupleis, tuple_size>::value - 1>::apply(is, t); } template <> istream &operator>>(istream &is, tuple<> &t) { return is; } template struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos::apply(os, t); return os << ' ' << get(t); } }; template struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } }; template ostream &operator<<(ostream &os, const tuple &t) { return tupleos, tuple_size>::value - 1>::apply(os, t); } template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; } template , string>::value, nullptr_t> = nullptr> istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; } template , string>::value, nullptr_t> = nullptr> ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; } } // namespace std #ifdef LOCAL #define dump(...) \ debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \ dump_func(#__VA_ARGS__, __VA_ARGS__) template void dump_func(const char *ptr, const T &x) { debug_stream << '\t'; for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ') debug_stream << c; debug_stream << " : " << x << '\n'; } template void dump_func(const char *ptr, const T &x, rest_t... rest) { debug_stream << '\t'; for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ') debug_stream << c; debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...); } #else #define dump(...) ((void)0) #endif template void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; } template void write_range(P __first, P __second) { for(P i = __first; i != __second; std::cout << (++i == __second ? '\n' : ' ')) std::cout << *i; } // substitue y for x if x > y. template inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitue y for x if x < y. template inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; } // binary search. i64 bin(const std::function &pred, i64 ok, i64 ng) { while(std::abs(ok - ng) > 1) { i64 mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; } return ok; } double bin(const std::function &pred, double ok, double ng, const double eps) { while(std::abs(ok - ng) > eps) { double mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; } return ok; } // be careful that val is type-sensitive. template void init(A (&array)[N], const T &val) { std::fill((T *)array, (T *)(array + N), val); } // reset all bits. template void reset(A &array) { memset(array, 0, sizeof(array)); } /* The main code follows. */ template class Convex_hull_trick { struct line { K slop, incp; line(K a, K b) : slop(a), incp(b) {} K get(K x) const { return slop * x + incp; } }; // struct line struct node { line ln; node *left, *right; node(const line &l) : ln(l), left(nullptr), right(nullptr) {} ~node() { delete left; delete right; } K get(K x) const { return ln.get(x); } }; // struct node using comp_t = std::function; const comp_t comp; const K x_min, x_max, eps; std::size_t node_cnt; node *root; // insert a line or segment for the interval [l, r). node *insert(node *const p, const K l, const K r, line ln, const K s, const K t) { if(t - eps < l or r - eps < s) return p; const K mid = (l + r) / 2; if(l < s or t < r) { p->left = insert(p->left, l, mid, ln, s, t); p->right = insert(p->right, mid, r, ln, s, t); return p; } if(not p) return ++node_cnt, new node(ln); bool lcmp = comp(ln.get(l), p->get(l)); bool rcmp = comp(ln.get(r - eps), p->get(r - eps)); if(lcmp == rcmp) { if(lcmp) p->ln = ln; return p; } if(r - l <= eps) return p; if(comp(ln.get(mid), p->get(mid))) { std::swap(p->ln, ln); lcmp = not lcmp; } if(lcmp) p->left = insert(p->left, l, mid, ln, s, t); else p->right = insert(p->right, mid, r, ln, s, t); return p; } public: static constexpr K inf = std::numeric_limits::max() / K(2) - K(1123456); // domain set to be the interval [x_min, x_max). Convex_hull_trick(const comp_t &_comp, const K _x_min, const K _x_max, const K _eps = K(1)) : comp(_comp), x_min(_x_min), x_max(_x_max), eps(_eps), root() {} ~Convex_hull_trick() { delete root; } std::size_t size() const { return node_cnt; } bool empty() const { return !root; } // insert a line whose slope is p and inception is q. void insert(const K p, const K q) { insert(p, q, x_min, x_max); } // insert a line(segment) whose slope is p, inception is q, // and domain is the interval [s, t). void insert(const K p, const K q, const K s, const K t) { if(s < t) root = insert(root, x_min, x_max, line(p, q), s, t); } // get the value at x. K query(const K x) const { node *p = root; K l = x_min, r = x_max; K res = inf; while(p) { if(comp(p->get(x), res)) res = p->get(x); if(r - l <= eps) return res; K mid = (l + r) / 2; if(x < mid) { p = p->left; r = mid; } else { p = p->right; l = mid; } } return res; } }; // class Convex_hull_trick using namespace std; struct solver { struct cht_mono { const i64 inf=1e17; deque que; void insert(i64 s,i64 t) { int n=que.size(); while(n>1) { i64 a,b,c,d; tie(a,b)=que[n-2]; tie(c,d)=que[n-1]; if(b*c-a*d>s*(b-d)+t*(c-a)) break; que.pop_back(); --n; } que.emplace_back(s,t); } i64 query(i64 x) { if(que.empty()) return inf; i64 a,b; tie(a,b)=que.front(); while(que.size()>1) { i64 c,d; tie(c,d)=que[1]; if(a*x+b>c*x+d) { que.pop_front(); a=c,b=d; } else { break; } } return a*x+b; } }; solver() { const i64 inf=1e17; int n; cin>>n; vector a(n); cin>>a; vector acc(n+1); for(int i=0; i cht(n+1); // vector> cht(n+1,Convex_hull_trick(std::less(), 0, 300000001)); i64 dp2[3030]; // i used ones init(dp2,inf); dp2[0]=0; cht[0].insert(0,0); for(int i=1; i<=n; ++i) { i64 dp[3030]; for(int j=0; j<=i; ++j) { dp[j]=cht[j].query(acc[i])+acc[i]*acc[i]; } for(int j=0; j<=i; ++j) { if(dp2[i-j]> t; // case number given while(t--) solver(); }