//#pragma GCC optimize("Ofast") //#pragma GCC target("avx") //#undef LOCAL #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); } template using V = vector; template using VV = V>; template ostream& operator<<(ostream& os, const pair& p) { return os << "P(" << p.first << ", " << p.second << ")"; } template ostream& operator<<(ostream& os, const V& v) { os << "["; for (auto d : v) os << d << ", "; return os << "]"; } struct Scanner { FILE* fp = nullptr; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) reread(); return true; } template ::value, int> = 0> bool read_single(T& ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template ::value, int> = 0> bool read_single(T& ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] - '0'); } if (neg) ref = -ref; return true; } template bool read_single(V& ref) { for (auto& d : ref) { if (!read_single(d)) return false; } return true; } void read() {} template void read(H& h, T&... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE* _fp) : fp(_fp) {} }; struct Printer { public: template void write() {} template void write(const H& h, const T&... t) { if (F) write_single(' '); write_single(h); write(t...); } template void writeln(const T&... t) { write(t...); write_single('\n'); } Printer(FILE* _fp) : fp(_fp) {} ~Printer() { flush(); } private: static constexpr size_t SIZE = 1 << 15; FILE* fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write_single(const char& val) { if (pos == SIZE) flush(); line[pos++] = val; } template ::value, int> = 0> void write_single(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write_single('0'); return; } if (val < 0) { write_single('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char('0' + (val % 10)); val /= 10; } reverse(small, small + len); memcpy(line + pos, small, len); pos += len; } void write_single(const string& s) { for (char c : s) write_single(c); } void write_single(const char* s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write_single(s[i]); } template void write_single(const V& val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write_single(' '); write_single(val[i]); } } }; /* struct E { int to, rev, cap; }; VV g; auto add_edge = [&](int from, int to, int cap) { g[from].push_back(E{to, int(g[to].size()), cap}); g[to].push_back(E{from, int(g[from].size())-1, 0}); }; */ template struct MaxFlow { C flow; V dual; // false: S-side true: T-side }; template struct MFExec { static constexpr C INF = numeric_limits::max(); C eps; VV& g; int s, t; V level, iter; C dfs(int v, C f) { if (v == t) return f; C res = 0; for (int& i = iter[v]; i < int(g[v].size()); i++) { E& e = g[v][i]; if (e.cap <= eps || level[v] >= level[e.to]) continue; C d = dfs(e.to, min(f, e.cap)); e.cap -= d; g[e.to][e.rev].cap += d; res += d; f -= d; if (f == 0) break; } return res; } MaxFlow info; MFExec(VV& _g, int _s, int _t, C _eps) : eps(_eps), g(_g), s(_s), t(_t) { int N = int(g.size()); C& flow = (info.flow = 0); while (true) { queue que; level = V(N, -1); level[s] = 0; que.push(s); while (!que.empty()) { int v = que.front(); que.pop(); for (E e: g[v]) { if (e.cap <= eps || level[e.to] >= 0) continue; level[e.to] = level[v] + 1; que.push(e.to); } } if (level[t] == -1) break; iter = V(N, 0); while (true) { C f = dfs(s, INF); if (!f) break; flow += f; } } for (int i = 0; i < N; i++) info.dual.push_back(level[i] == -1); } }; template MaxFlow get_mf(VV& g, int s, int t, C eps) { return MFExec(g, s, t, eps).info; } Scanner sc = Scanner(stdin); Printer pr = Printer(stdout); int main() { int h, w; sc.read(h, w); struct E { int to, rev; ll cap; }; VV g(2 + h + w); int sv = h + w, tv = sv + 1; auto add_edge = [&](int from, int to, ll cap) { g[from].push_back(E{to, int(g[to].size()), cap}); g[to].push_back(E{from, int(g[from].size())-1, 0}); }; ll off = 0; V ho(h), we(w); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { ll x; sc.read(x); add_edge(i, h + j, x); ho[i] += x; } } for (int i = 0; i < h; i++) { ll y; sc.read(y); ho[i] -= y; if (ho[i] < 0) { off += -ho[i]; add_edge(i, tv, -ho[i]); } else { add_edge(sv, i, ho[i]); } } for (int i = 0; i < w; i++) { ll y; sc.read(y); off += y; add_edge(h + i, tv, y); } off -= get_mf(g, sv, tv, 0LL).flow; pr.writeln(off); return 0; }