#include // created [2019/12/19] 21:42:53 // 何かの間違いで通ってくれ #pragma GCC diagnostic ignored "-Wsign-compare" #pragma GCC diagnostic ignored "-Wsign-conversion" using i32 = int32_t; using i64 = int64_t; using u32 = uint32_t; using u64 = uint64_t; using uint = unsigned int; using usize = std::size_t; using ll = long long; using ull = unsigned long long; using ld = long double; template using arr = T (&)[n]; template using c_arr = const T (&)[n]; template constexpr T popcount(const T u) { return u ? static_cast(__builtin_popcountll(static_cast(u))) : static_cast(0); } template constexpr T log2p1(const T u) { return u ? static_cast(64 - __builtin_clzll(static_cast(u))) : static_cast(0); } template constexpr T msbp1(const T u) { return log2p1(u); } template constexpr T lsbp1(const T u) { return __builtin_ffsll(u); } template constexpr T clog(const T u) { return u ? log2p1(u - 1) : static_cast(u); } template constexpr bool ispow2(const T u) { return u and (static_cast(u) & static_cast(u - 1)) == 0; } template constexpr T ceil2(const T u) { return static_cast(1) << clog(u); } template constexpr T floor2(const T u) { return u == 0 ? static_cast(0) : static_cast(1) << (log2p1(u) - 1); } template constexpr bool btest(const T mask, const usize ind) { return static_cast((static_cast(mask) >> ind) & static_cast(1)); } template void bset(T& mask, const usize ind) { mask |= (static_cast(1) << ind); } template void breset(T& mask, const usize ind) { mask &= ~(static_cast(1) << ind); } template void bflip(T& mask, const usize ind) { mask ^= (static_cast(1) << ind); } template void bset(T& mask, const usize ind, const bool b) { (b ? bset(mask, ind) : breset(mask, ind)); } template constexpr T bcut(const T mask, const usize ind) { return ind == 0 ? static_cast(0) : static_cast((static_cast(mask) << (64 - ind)) >> (64 - ind)); } template bool chmin(T& a, const T& b) { return (a > b ? a = b, true : false); } template bool chmax(T& a, const T& b) { return (a < b ? a = b, true : false); } constexpr unsigned int mod = 1000000007; template constexpr T inf_v = std::numeric_limits::max() / 4; template constexpr Real pi_v = Real{3.141592653589793238462643383279502884}; auto mfp = [](auto&& f) { return [=](auto&&... args) { return f(f, std::forward(args)...); }; }; template T in() { T v; return std::cin >> v, v; } template T in_v(typename std::enable_if<(i == n), c_arr>::type) { return in(); } template auto in_v(typename std::enable_if<(i < n), c_arr>::type& szs) { const usize s = (usize)szs[i]; std::vector(szs))> ans(s); for (usize j = 0; j < s; j++) { ans[j] = in_v(szs); } return ans; } template auto in_v(c_arr szs) { return in_v(szs); } template auto in_t() { return std::tuple...>{in()...}; } struct io_init { io_init() { std::cin.tie(nullptr), std::ios::sync_with_stdio(false); std::cout << std::fixed << std::setprecision(20); } void clear() { std::cin.tie(), std::ios::sync_with_stdio(true); } } io_setting; template int out(const T& v) { return std::cout << v, 0; } template int out(const std::vector& v) { for (usize i = 0; i < v.size(); i++) { if (i > 0) { std::cout << ' '; } out(v[i]); } return std::cout << "\n", 0; } template int out(const std::pair& v) { return out(v.first), std::cout << ' ', out(v.second), 0; } template int out(const T& v, const Args... args) { return out(v), std::cout << ' ', out(args...), 0; } template int outln(const Args... args) { return out(args...), std::cout << '\n', 0; } template void outel(const Args... args) { return out(args...), std::cout << std::endl, 0; } # define SHOW(...) static_cast(0) constexpr ull TEN(const usize n) { return n == 0 ? 1ULL : TEN(n - 1) * 10ULL; } template auto make_v(typename std::enable_if<(i == n), c_arr>::type, const T& v = T{}) { return v; } template auto make_v(typename std::enable_if<(i < n), c_arr>::type szs, const T& v = T{}) { const usize s = (usize)szs[i]; return std::vector(szs, v))>(s, make_v(szs, v)); } template auto make_v(c_arr szs, const T& t = T{}) { return make_v(szs, t); } template class Dinic { private: static_assert(std::is_integral::value, "Integral required."); struct edge { int to; T cap; int rev; }; const int V; std::vector level, iter, que; static unsigned long long floor2(unsigned long long v) { v = v | (v >> 1), v = v | (v >> 2); v = v | (v >> 4), v = v | (v >> 8); v = v | (v >> 16), v = v | (v >> 32); return v - (v >> 1); } void bfs(const int s, const T base) { fill(level.begin(), level.end(), -1); level[s] = 0; int qh = 0, qt = 0; for (que[qt++] = s; qh < qt;) { int v = que[qh++]; for (edge& e : G[v]) { if (level[e.to] < 0 && e.cap >= base) { level[e.to] = level[v] + 1; que[qt++] = e.to; } } } } T dfs(const int v, const int t, const T base, const T f) { if (v == t) return f; T sum = 0; for (int& i = iter[v]; i < (int)G[v].size(); i++) { edge& e = G[v][i]; if (e.cap >= base && level[v] < level[e.to]) { T d = dfs(e.to, t, base, std::min(f - sum, e.cap)); if (d > 0) { e.cap -= d; G[e.to][e.rev].cap += d; sum += d; if (f - sum < base) break; } } } return sum; } public: std::vector> G; Dinic(const int node_size) : V(node_size), level(V), iter(V), que(V), G(V) {} //辺を張る void add_edge(const int from, const int to, const T cap) { G[from].push_back((edge){to, cap, (int)G[to].size()}); G[to].push_back((edge){from, (T)0, (int)G[from].size() - 1}); } //最大流を計算(max_cap は辺の容量の上限) T solve(const int s, const int t, const T max_cap) { T flow = 0; for (T base = floor2(max_cap); base >= 1;) { bfs(s, base); if (level[t] < 0) { base >>= 1; continue; } fill(iter.begin(), iter.end(), 0); flow += dfs(s, t, base, std::numeric_limits::max()); } return flow; } }; int main() { const auto [H, W] = in_t(); const auto G = in_v({H, W}); auto R = in_v({H}); auto C = in_v({W}); for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { R[i] -= G[i][j]; C[j] -= G[i][j]; } } constexpr ll inf = TEN(9); Dinic f(H * W + H + W + 2); const int S = H * W + H + W; const int T = H * W + H + W + 1; ll ans = 0; for (int i = 0; i < H; i++) { if (R[i] <= 0) { f.add_edge(i, T, -R[i]); } else { ans += R[i]; f.add_edge(S, i, R[i]); } } for (int j = 0; j < W; j++) { if (C[j] <= 0) { f.add_edge(H + j, T, -C[j]); } else { ans += C[j]; f.add_edge(S, H + j, C[j]); } } for (int i = 0; i < H; i++) { for (int j = 0; j < W; j++) { const int v = i * W + j + H + W; ans += G[i][j]; if (R[i] <= 0) { f.add_edge(v, i, inf); } if (C[j] <= 0) { f.add_edge(v, H + j, inf); } f.add_edge(S, v, G[i][j]); } } outln(ans - f.solve(S, T, inf)); return 0; }