import std.conv, std.functional, std.range, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; } int readInt() { return readToken.to!int; } long readLong() { return readToken.to!long; } real readReal() { return readToken.to!real; } bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } } bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } } int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; } int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); } int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); } class MaxFlow(Capa) { enum Capa wEPS = 0; enum Capa wINF = 10L^^18; int n, m; int[][] g; int[] zu; Capa[] capa; Capa tof; int[] lev, see, que; this(int n) { this.n = n; m = 0; g = new int[][n]; zu = []; capa = []; lev = new int[n]; see = new int[n]; que = new int[n]; } void addEdge(int u, int v, Capa w0, Capa w1 = 0) { g[u] ~= m; zu ~= v; capa ~= w0; ++m; g[v] ~= m; zu ~= u; capa ~= w1; ++m; } Capa augment(int src, int ink, Capa flo) { if (src == ink) return flo; foreach (i; g[src][see[src] .. $]) { if (capa[i] > wEPS && lev[src] < lev[zu[i]]) { Capa f = augment(zu[i], ink, min(flo, capa[i])); if (f > wEPS) { capa[i] -= f; capa[i ^ 1] += f; return f; } } ++see[src]; } return 0; } bool dinic(int src, int ink, Capa flo = wINF) { for (tof = 0; tof + wEPS < flo; ) { int[] q; lev[] = -1; dinicBFS: for (lev[src] = 0, q ~= src; !q.empty; ) { int u = q.front; q.popFront; foreach (i; g[u]) { int v = zu[i]; if (capa[i] > wEPS && lev[v] == -1) { lev[v] = lev[u] + 1; q ~= v; if (v == ink) break dinicBFS; } } } if (lev[ink] == -1) return false; see[] = 0; for (; ; ) { Capa f = augment(src, ink, flo - tof); if (f <= wEPS) break; tof += f; } } return true; } } /* cost = \sum_x -R[x] a_x + \sum_y -C[y] b_y + \sum_{x,y} G[x][y] (a_x OR b_y) 00 -> 0 01 -> 1 10 -> 1 11 -> 1 submodular */ void main() { try { for (; ; ) { const H = readInt(); const W = readInt(); auto G = new long[][](H, W); foreach (x; 0 .. H) foreach (y; 0 .. W) { G[x][y] = readLong(); } auto R = new long[H]; foreach (x; 0 .. H) { R[x] = readLong(); } auto C = new long[W]; foreach (y; 0 .. W) { C[y] = readLong(); } auto mf = new MaxFlow!long(2 + H + W); auto sums = new long[H]; long ans; foreach (x; 0 .. H) foreach (y; 0 .. W) { sums[x] += G[x][y]; mf.addEdge(2 + x, 2 + H + y, G[x][y]); } foreach (x; 0 .. H) { if (sums[x] - R[x] > 0) { mf.addEdge(0, 2 + x, sums[x] - R[x]); } else if (sums[x] - R[x] < 0) { ans += sums[x] - R[x]; mf.addEdge(2 + x, 1, R[x] - sums[x]); } } foreach (y; 0 .. W) { ans += -C[y]; mf.addEdge(2 + H + y, 1, C[y]); } mf.dinic(0, 1); ans += mf.tof; ans *= -1; writeln(ans); } } catch (EOFException e) { } }