package main import ( "bufio" "errors" "fmt" "io" "math" "os" "sort" "strconv" ) /*********** I/O ***********/ var ( // ReadString returns a WORD string. ReadString func() string stdout *bufio.Writer ) func init() { ReadString = newReadString(os.Stdin) stdout = bufio.NewWriter(os.Stdout) } func newReadString(ior io.Reader) func() string { r := bufio.NewScanner(ior) // r.Buffer(make([]byte, 1024), int(1e+11)) // for AtCoder r.Buffer(make([]byte, 1024), int(1e+9)) // for Codeforces // Split sets the split function for the Scanner. The default split function is ScanLines. // Split panics if it is called after scanning has started. r.Split(bufio.ScanWords) return func() string { if !r.Scan() { panic("Scan failed") } return r.Text() } } // ReadInt returns an integer. func ReadInt() int { return int(readInt64()) } func ReadInt2() (int, int) { return int(readInt64()), int(readInt64()) } func ReadInt3() (int, int, int) { return int(readInt64()), int(readInt64()), int(readInt64()) } func ReadInt4() (int, int, int, int) { return int(readInt64()), int(readInt64()), int(readInt64()), int(readInt64()) } // ReadInt64 returns as integer as int64. func ReadInt64() int64 { return readInt64() } func ReadInt64_2() (int64, int64) { return readInt64(), readInt64() } func ReadInt64_3() (int64, int64, int64) { return readInt64(), readInt64(), readInt64() } func ReadInt64_4() (int64, int64, int64, int64) { return readInt64(), readInt64(), readInt64(), readInt64() } func readInt64() int64 { i, err := strconv.ParseInt(ReadString(), 0, 64) if err != nil { panic(err.Error()) } return i } // ReadIntSlice returns an integer slice that has n integers. func ReadIntSlice(n int) []int { b := make([]int, n) for i := 0; i < n; i++ { b[i] = ReadInt() } return b } // ReadInt64Slice returns as int64 slice that has n integers. func ReadInt64Slice(n int) []int64 { b := make([]int64, n) for i := 0; i < n; i++ { b[i] = ReadInt64() } return b } // ReadFloat64 returns an float64. func ReadFloat64() float64 { return float64(readFloat64()) } func readFloat64() float64 { f, err := strconv.ParseFloat(ReadString(), 64) if err != nil { panic(err.Error()) } return f } // ReadFloatSlice returns an float64 slice that has n float64. func ReadFloat64Slice(n int) []float64 { b := make([]float64, n) for i := 0; i < n; i++ { b[i] = ReadFloat64() } return b } // ReadRuneSlice returns a rune slice. func ReadRuneSlice() []rune { return []rune(ReadString()) } /*********** Debugging ***********/ // ZeroPaddingRuneSlice returns binary expressions of integer n with zero padding. // For debugging use. func ZeroPaddingRuneSlice(n, digitsNum int) []rune { sn := fmt.Sprintf("%b", n) residualLength := digitsNum - len(sn) if residualLength <= 0 { return []rune(sn) } zeros := make([]rune, residualLength) for i := 0; i < len(zeros); i++ { zeros[i] = '0' } res := []rune{} res = append(res, zeros...) res = append(res, []rune(sn)...) return res } // Strtoi is a wrapper of strconv.Atoi(). // If strconv.Atoi() returns an error, Strtoi calls panic. func Strtoi(s string) int { if i, err := strconv.Atoi(s); err != nil { panic(errors.New("[argument error]: Strtoi only accepts integer string")) } else { return i } } // PrintIntsLine returns integers string delimited by a space. func PrintIntsLine(A ...int) string { res := []rune{} for i := 0; i < len(A); i++ { str := strconv.Itoa(A[i]) res = append(res, []rune(str)...) if i != len(A)-1 { res = append(res, ' ') } } return string(res) } // PrintIntsLine returns integers string delimited by a space. func PrintInts64Line(A ...int64) string { res := []rune{} for i := 0; i < len(A); i++ { str := strconv.FormatInt(A[i], 10) // 64bit int version res = append(res, []rune(str)...) if i != len(A)-1 { res = append(res, ' ') } } return string(res) } // PrintDebug is wrapper of fmt.Fprintf(os.Stderr, format, a...) func PrintDebug(format string, a ...interface{}) { fmt.Fprintf(os.Stderr, format, a...) } /********** FAU standard libraries **********/ //fmt.Sprintf("%b\n", 255) // binary expression /********** I/O usage **********/ //str := ReadString() //i := ReadInt() //X := ReadIntSlice(n) //S := ReadRuneSlice() //a := ReadFloat64() //A := ReadFloat64Slice(n) //str := ZeroPaddingRuneSlice(num, 32) //str := PrintIntsLine(X...) /* ASCII code ASCII 10進数 ASCII 10進数 ASCII 10進数 ! 33 " 34 # 35 $ 36 % 37 & 38 ' 39 ( 40 ) 41 * 42 + 43 , 44 - 45 . 46 / 47 0 48 1 49 2 50 3 51 4 52 5 53 6 54 7 55 8 56 9 57 : 58 ; 59 < 60 = 61 > 62 ? 63 @ 64 A 65 B 66 C 67 D 68 E 69 F 70 G 71 H 72 I 73 J 74 K 75 L 76 M 77 N 78 O 79 P 80 Q 81 R 82 S 83 T 84 U 85 V 86 W 87 X 88 Y 89 Z 90 [ 91 \ 92 ] 93 ^ 94 _ 95 ` 96 a 97 b 98 c 99 d 100 e 101 f 102 g 103 h 104 i 105 j 106 k 107 l 108 m 109 n 110 o 111 p 112 q 113 r 114 s 115 t 116 u 117 v 118 w 119 x 120 y 121 z 122 { 123 | 124 } 125 ~ 126 127 */ /*******************************************************************/ const ( // General purpose MOD = 1000000000 + 7 ALPHABET_NUM = 26 INF_INT64 = math.MaxInt64 INF_BIT60 = 1 << 60 INF_INT32 = math.MaxInt32 INF_BIT30 = 1 << 30 NIL = -1 // for dijkstra, prim, and so on WHITE = 0 GRAY = 1 BLACK = 2 ) var n, m, k int var E []int var emap map[int]bool func main() { n, m, k = ReadInt3() for i := 0; i < m; i++ { a, b, c := ReadInt3() a, b = a-1, b-1 es = append(es, Edge{key: c, id: i, from: a, to: b, cost: c}) } emap = make(map[int]bool) for i := 0; i < k; i++ { e := ReadInt() e-- E = append(E, e) emap[e] = true } v, e = n, m mstTotal := kruskal() total := 0 for i := 0; i < m; i++ { total += es[i].cost } fmt.Println(total - mstTotal) } // ※隣接リストのような形で辺を持たない // ベルマンフォード法のような辺の管理を行う // 頂点fromから頂点toへのコストcostの辺 // ソートする必要があるためsorterインタフェースを実装する // type Edge struct { // from, to, cost int // } var es []Edge // 辺 var v, e int // vは頂点数, eは辺数 // O(|E| * log|V|) func kruskal() int { L := EdgeList{} for i := 0; i < m; i++ { L = append(L, &es[i]) } sort.Stable(byKey{L}) res := 0 // 閉路判定用のUF木 uf := NewUnionFind(v) // K本は最初に追加しておく for _, e := range L { if _, ok := emap[e.id]; ok { uf.Unite(e.from, e.to) res += e.cost } } // すべての辺についてチェックする for _, e := range L { // 辺の両端が同じ連結成分に属していない場合のみ全域木のコストに加算する if !uf.Same(e.from, e.to) { uf.Unite(e.from, e.to) res += e.cost } } return res } type Edge struct { key int id, from, to, cost int } type EdgeList []*Edge type byKey struct { EdgeList } func (l EdgeList) Len() int { return len(l) } func (l EdgeList) Swap(i, j int) { l[i], l[j] = l[j], l[i] } func (l byKey) Less(i, j int) bool { return l.EdgeList[i].key < l.EdgeList[j].key } // how to use // L := make(EdgeList, 0, 200000+5) // L = append(L, &Edge{key: intValue}) // sort.Stable(byKey{ L }) // Stable ASC // sort.Stable(sort.Reverse(byKey{ L })) // Stable DESC // UnionFind provides disjoint set algorithm. // It accepts both 0-based and 1-based setting. type UnionFind struct { parents []int } // NewUnionFind returns a pointer of a new instance of UnionFind. func NewUnionFind(n int) *UnionFind { uf := new(UnionFind) uf.parents = make([]int, n+1) for i := 0; i <= n; i++ { uf.parents[i] = -1 } return uf } // Root method returns root node of an argument node. // Root method is a recursive function. func (uf *UnionFind) Root(x int) int { if uf.parents[x] < 0 { return x } // route compression uf.parents[x] = uf.Root(uf.parents[x]) return uf.parents[x] } // Unite method merges a set including x and a set including y. func (uf *UnionFind) Unite(x, y int) bool { xp := uf.Root(x) yp := uf.Root(y) if xp == yp { return false } // merge: xp -> yp // merge larger set to smaller set if uf.CcSize(xp) > uf.CcSize(yp) { xp, yp = yp, xp } // update set size uf.parents[yp] += uf.parents[xp] // finally, merge uf.parents[xp] = yp return true } // Same method returns whether x is in the set including y or not. func (uf *UnionFind) Same(x, y int) bool { return uf.Root(x) == uf.Root(y) } // CcSize method returns the size of a set including an argument node. func (uf *UnionFind) CcSize(x int) int { return -uf.parents[uf.Root(x)] } /* - まずは全探索を検討しましょう - MODは最後にとりましたか? - ループを抜けた後も処理が必要じゃありませんか? - 和・積・あまりを求められたらint64が必要ではありませんか? - いきなりオーバーフローはしていませんか? - MOD取る系はint64必須ですよ? */ /*******************************************************************/