#ifdef LOCAL #define _GLIBCXX_DEBUG #define __clock__ #else #pragma GCC optimize("Ofast") // #define NDEBUG #endif // #define __buffer_check__ #define __precision__ 10 #define iostream_untie true #define debug_stream std::cerr #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #define odd(n) ((n) & 1) #define even(n) (not __odd(n)) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(n) #define __clz64(n) __builtin_clzll(n) #define __ctz32(n) __builtin_ctz(n) #define __ctz64(n) __builtin_ctzll(n) namespace setting { using namespace std::chrono; system_clock::time_point start_time, end_time; long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast(end_time - start_time).count(); } void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; } void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; } struct setupper { setupper() { if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(__precision__); #ifdef stderr_path if(freopen(stderr_path, "a", stderr)) { std::cerr << std::fixed << std::setprecision(__precision__); } #endif #ifdef stdout_path if(not freopen(stdout_path, "w", stdout)) { freopen("CON", "w", stdout); debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdout file.\n"; } std::cout << ""; #endif #ifdef stdin_path if(not freopen(stdin_path, "r", stdin)) { freopen("CON", "r", stdin); debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdin file.\n"; } #endif #ifdef LOCAL debug_stream << "\n----- stderr at LOCAL -----\n\n"; atexit(print_elapsed_time); #endif #ifdef __buffer_check__ atexit(buffer_check); #endif #if defined(__clock__) || defined(LOCAL) start_time = system_clock::now(); #endif } } __setupper; // struct setupper } // namespace setting #ifdef __clock__ class { std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built = false; public: void build(int crt_ln, const std::string &crt_func) { is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func; else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n"; } void get(int crt_ln, const std::string &crt_func) { if(is_built) { std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now()); long long diff = std::chrono::duration_cast(crt_pt - last_pt).count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n"; } } } myclock; // unnamed class #define build_clock() myclock.build(__LINE__, __func__) #define set_clock() myclock.set(__LINE__, __func__) #define get_clock() myclock.get(__LINE__, __func__) #else #define build_clock() ((void)0) #define set_clock() ((void)0) #define get_clock() ((void)0) #endif namespace std { // hash template size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template struct hash> { size_t operator()(pair const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template ::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc::apply(seed, t), get(t)); } }; template struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template struct hash> { size_t operator()(tuple const &t) const { return tuple_hash_calc>::apply(0, t); } }; // iostream template istream &operator>>(istream &is, pair &p) { return is >> p.first >> p.second; } template ostream &operator<<(ostream &os, const pair &p) { return os << p.first << ' ' << p.second; } template struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis::apply(is, t); return is >> get(t); } }; template struct tupleis { static istream &apply(istream &is, tuple_t &t) { return is; } }; template istream &operator>>(istream &is, tuple &t) { return tupleis, tuple_size>::value - 1>::apply(is, t); } template <> istream &operator>>(istream &is, tuple<> &t) { return is; } template struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos::apply(os, t); return os << ' ' << get(t); } }; template struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } }; template ostream &operator<<(ostream &os, const tuple &t) { return tupleos, tuple_size>::value - 1>::apply(os, t); } template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; } template , string>::value, nullptr_t> = nullptr> istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; } template , string>::value, nullptr_t> = nullptr> ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; } } // namespace std #ifdef LOCAL #define dump(...) \ debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \ dump_func(#__VA_ARGS__, __VA_ARGS__) template void dump_func(const char *ptr, const T &x) { debug_stream << '\t'; for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ') debug_stream << c; debug_stream << " : " << x << '\n'; } template void dump_func(const char *ptr, const T &x, rest_t... rest) { debug_stream << '\t'; for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ') debug_stream << c; debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...); } #else #define dump(...) ((void)0) #endif template T read() { T x; std::cin >> x; return x; } template void read(iterator __first, iterator __last) { for(iterator i = __first; i != __last; ++i) std::cin >> *i; } template void write(iterator __first, iterator __last) { for(iterator i = __first; i != __last; std::cout << (++i == __last ? "" : " ")) std::cout << *i; } // substitute y for x if x > y. template inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitute y for x if x < y. template inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; } // binary search on integers. long long bin(long long __ok, long long __ng, const std::function &pred) { while(std::abs(__ok - __ng) > 1) { long long mid{(__ok + __ng) / 2}; (pred(mid) ? __ok : __ng) = mid; } return __ok; } // binary search on real numbers. long double bin(long double __ok, long double __ng, const long double eps, const std::function &pred) { while(std::abs(__ok - __ng) > eps) { long double mid{(__ok + __ng) / 2}; (pred(mid) ? __ok : __ng) = mid; } return __ok; } // binary search on integers(with a class member function). template long long bin(long long __ok, long long __ng, bool (X::*const pred)(int_t), X *const x) { while(std::abs(__ok - __ng) > 1) { long long mid{(__ok + __ng) / 2}; ((x->*pred)(mid) ? __ok : __ng) = mid; } return __ok; } // binary search on real numbers(with a class member function). template long double bin(long double __ok, long double __ng, const long double eps, bool (X::*const pred)(real_t), X *const x) { while(std::abs(__ok - __ng) > eps) { long double mid{(__ok + __ng) / 2}; ((x->*pred)(mid) ? __ok : __ng) = mid; } return __ok; } // be careful that val is type-sensitive. template void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); } // reset all bits. template void reset(A &array) { memset(array, 0, sizeof(array)); } /* The main code follows. */ using namespace std; using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t; using pii = pair; using pll = pair; template using heap = priority_queue; template using rheap = priority_queue, greater>; template using hashset = unordered_set; template using hashmap = unordered_map; // verified at https://judge.yosupo.jp/submission/2862 #ifndef LAZY_SEGMENT_TREE_HPP #define LAZY_SEGMENT_TREE_HPP template class lazy_segment_tree { using value_type = typename Monoid::value_type; using operand_type = typename Action::value_type; Monoid *const monoid_ptr, &monoid; Action *const action_ptr, &action; const size_t orig_n, height, ext_n; std::vector data; std::vector lazy; void recalc(size_t node) { data[node] = monoid(data[node << 1], data[node << 1 | 1]); } void apply(size_t index, const operand_type &operand) { action.act(data[index], operand); if(index < ext_n) action(lazy[index], operand); } void push(size_t index) { apply(index << 1, lazy[index]); apply(index << 1 | 1, lazy[index]); lazy[index] = action.identity(); } void left_bound(size_t index, const std::function &pred, size_t node, size_t begin, size_t end, value_type &now, size_t &res) { if(index <= begin || end < res) return; if(end <= index) { const value_type nxt = monoid(data[node], now); if(pred(nxt)) { res = begin, now = nxt; return; } } if(end - begin > 1) { push(node); // search from right child left_bound(index, pred, node << 1 | 1, (begin + end) >> 1, end, now, res); left_bound(index, pred, node << 1, begin, (begin + end) >> 1, now, res); lazy[node] = action.identity(); } } void right_bound(size_t index, const std::function &pred, size_t node, size_t begin, size_t end, value_type &now, size_t &res) { if(index >= end || begin > res) return; if(begin >= index) { const value_type nxt = monoid(now, data[node]); if(pred(nxt)) { res = end, now = nxt; return; } } if(end - begin > 1) { push(node); // search from left child right_bound(index, pred, node << 1, begin, (begin + end) >> 1, now, res); right_bound(index, pred, node << 1 | 1, (begin + end) >> 1, end, now, res); lazy[node] = action.identity(); } } public: explicit lazy_segment_tree(size_t n) : monoid_ptr{new Monoid}, monoid{*monoid_ptr}, action_ptr{new Action}, action{*action_ptr}, orig_n{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), ext_n(1 << height), data(ext_n << 1, monoid.identity()), lazy(ext_n, action.identity()) {} lazy_segment_tree(size_t n, Monoid &_monoid) : monoid_ptr{}, monoid{_monoid}, action_ptr{new Action}, action{*action_ptr}, orig_n{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), ext_n(1 << height), data(ext_n << 1, monoid.identity()), lazy(ext_n, action.identity()) {} lazy_segment_tree(size_t n, Action &_actor) : monoid_ptr{new Monoid}, monoid{*monoid_ptr}, action_ptr{}, action{_actor}, orig_n{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), ext_n(1 << height), data(ext_n << 1, monoid.identity()), lazy(ext_n, action.identity()) {} lazy_segment_tree(size_t n, Monoid &_monoid, Action &_actor) : monoid_ptr{}, monoid{_monoid}, action_ptr{}, action{_actor}, orig_n{n}, height(n > 1 ? 32 - __builtin_clz(n - 1) : 0), ext_n(1 << height), data(ext_n << 1, monoid.identity()), lazy(ext_n, action.identity()) {} ~lazy_segment_tree() { delete monoid_ptr; delete action_ptr; } // copy of the element at position i. value_type operator[](size_t i) { return fold(i, i + 1); } void build(value_type *__first, value_type *__last) { assert((size_t)std::distance(__first, __last) <= ext_n); std::copy(__first, __last, data.begin() + ext_n); for(size_t i = ext_n - 1; i; --i) recalc(i); } template void build(iterator __first, iterator __last) { static_assert(std::is_same::value_type, value_type>::value, "iterator's value_type should be equal to Monoid's"); assert((size_t)std::distance(__first, __last) <= ext_n); std::copy(__first, __last, data.begin() + ext_n); for(size_t i = ext_n - 1; i; --i) recalc(i); } void init(const value_type &x) { for(size_t i = 0; i != ext_n; ++i) data[i | ext_n] = x; for(size_t i = ext_n - 1; i; --i) recalc(i); } void update(size_t index, const operand_type &operand) { update(index, index + 1, operand); } void update(size_t begin, size_t end, const operand_type &operand) { assert(0 <= begin && end <= orig_n); begin += ext_n, end += ext_n - 1; for(size_t i = height; i; --i) push(begin >> i), push(end >> i); for(size_t l = begin, r = end + 1; end; l >>= 1, r >>= 1) { if(l < r) { if(l & 1) apply(l++, operand); if(r & 1) apply(--r, operand); } if(begin >>= 1, end >>= 1) { recalc(begin), recalc(end); } } } value_type fold(size_t begin, size_t end) { assert(0 <= begin && end <= orig_n); begin += ext_n, end += ext_n - 1; value_type left_val{monoid.identity()}, right_val{monoid.identity()}; for(size_t l = begin, r = end + 1; end; l >>= 1, r >>= 1) { if(l < r) { if(l & 1) left_val = monoid(left_val, data[l++]); if(r & 1) right_val = monoid(data[--r], right_val); } if(begin >>= 1, end >>= 1) { action.act(left_val, lazy[begin]); action.act(right_val, lazy[end]); } } return monoid(left_val, right_val); } // minimum l where range [l, index) meets the condition. size_t left_bound(size_t index, const std::function &pred) { assert(index <= orig_n); size_t res = index; value_type now = monoid.identity(); left_bound(index, pred, 1, 0, ext_n, now, res); return res; } // maximum r where range [index, r) meets the condition. size_t right_bound(size_t index, const std::function &pred) { assert(index < orig_n); size_t res = index; value_type now = monoid.identity(); right_bound(index, pred, 1, 0, ext_n, now, res); return res < orig_n ? res : orig_n; } }; //class lazy_segment_tree #endif struct monoid { struct value_type { i64 even_cnt=0; i64 odd_cnt=0; i64 even_sum=0; i64 odd_sum=0; }; value_type identity() { return {0,0,0,0}; } value_type operator()(const value_type &x, const value_type &y) { return {x.even_cnt+y.even_cnt,x.odd_cnt+y.odd_cnt,x.even_sum+y.even_sum,x.odd_sum+y.odd_sum}; } }; struct action { struct value_type { int type=2; i64 val=0; }; value_type identity() { return {2,0}; } void operator()(value_type &x, value_type y) { if(y.type<2) { int tmp=y.type; if(x.val&1) tmp=!y.type; if(x.type<2) { x.type^=tmp; } else { x.type=tmp; } x.val=y.val; } else { x.val+=y.val; } } void act(monoid::value_type &x, value_type y) { if(y.type<2) { x.even_sum=x.even_cnt; x.odd_sum=x.odd_cnt; if(y.type) { x.even_sum=0; } else { x.odd_sum=0; swap(x.even_cnt, x.odd_cnt); swap(x.even_sum,x.odd_sum); } } if(y.val&1) { swap(x.even_cnt,x.odd_cnt); swap(x.even_sum,x.odd_sum); } x.even_sum+=x.even_cnt*y.val; x.odd_sum+=x.odd_cnt*y.val; } }; struct solver { int n,Q; vector a; solver() : n(read()),Q(read()) { lazy_segment_tree laz(n); { vector init(n); for(int i=0; i>a; if(a&1) { init[i].odd_cnt++; init[i].odd_sum+=a; } else { init[i].even_cnt++; init[i].even_sum+=a; } } laz.build(all(init)); } while(Q--) { int type,l,r; cin>>type>>l>>r; --l; if(type==1) { laz.update(l,r,{1,0}); } else if(type==2) { laz.update(l,r,{2,read()}); } else { auto res=laz.fold(l,r); cout << res.even_sum+res.odd_sum << "\n"; } } } }; // struct solver int main(int argc, char *argv[]) { u32 t; // loop count #ifdef LOCAL t = 1; #else t = 1; // single test case #endif // t = -1; // infinite loop // cin >> t; // case number given while(t--) { solver(); } }