#ifdef LOCAL #define _GLIBCXX_DEBUG #define __clock__ #else #pragma GCC optimize("Ofast") // #define NDEBUG #endif // #define __buffer_check__ #define __precision__ 10 #define iostream_untie true #define debug_stream std::cerr #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #define odd(n) ((n) & 1) #define even(n) (not __odd(n)) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(n) #define __clz64(n) __builtin_clzll(n) #define __ctz32(n) __builtin_ctz(n) #define __ctz64(n) __builtin_ctzll(n) using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t; using pii = std::pair; using pll = std::pair; template using heap = std::priority_queue; template using rheap = std::priority_queue, std::greater>; template using hashset = std::unordered_set; template using hashmap = std::unordered_map; namespace setting { using namespace std::chrono; system_clock::time_point start_time, end_time; long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast(end_time - start_time).count(); } void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; } void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; } struct setupper { setupper() { if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(__precision__); #ifdef stderr_path if(freopen(stderr_path, "a", stderr)) { std::cerr << std::fixed << std::setprecision(__precision__); } #endif #ifdef stdout_path if(not freopen(stdout_path, "w", stdout)) { freopen("CON", "w", stdout); debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdout file.\n"; } std::cout << ""; #endif #ifdef stdin_path if(not freopen(stdin_path, "r", stdin)) { freopen("CON", "r", stdin); debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdin file.\n"; } #endif #ifdef LOCAL debug_stream << "----- stderr at LOCAL -----\n\n"; atexit(print_elapsed_time); #endif #ifdef __buffer_check__ atexit(buffer_check); #endif #if defined(__clock__) || defined(LOCAL) start_time = system_clock::now(); #endif } } __setupper; // struct setupper } // namespace setting #ifdef __clock__ class { std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built = false; public: void build(int crt_ln, const std::string &crt_func) { is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func; else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n"; } void get(int crt_ln, const std::string &crt_func) { if(is_built) { std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now()); long long diff = std::chrono::duration_cast(crt_pt - last_pt).count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n"; } } } myclock; // unnamed class #define build_clock() myclock.build(__LINE__, __func__) #define set_clock() myclock.set(__LINE__, __func__) #define get_clock() myclock.get(__LINE__, __func__) #else #define build_clock() ((void)0) #define set_clock() ((void)0) #define get_clock() ((void)0) #endif namespace std { // hash template size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template struct hash> { size_t operator()(pair const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template ::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc::apply(seed, t), get(t)); } }; template struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template struct hash> { size_t operator()(tuple const &t) const { return tuple_hash_calc>::apply(0, t); } }; // iostream template istream &operator>>(istream &is, pair &p) { return is >> p.first >> p.second; } template ostream &operator<<(ostream &os, const pair &p) { return os << p.first << ' ' << p.second; } template struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis::apply(is, t); return is >> get(t); } }; template struct tupleis { static istream &apply(istream &is, tuple_t &t) { return is; } }; template istream &operator>>(istream &is, tuple &t) { return tupleis, tuple_size>::value - 1>::apply(is, t); } template <> istream &operator>>(istream &is, tuple<> &t) { return is; } template struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos::apply(os, t); return os << ' ' << get(t); } }; template struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } }; template ostream &operator<<(ostream &os, const tuple &t) { return tupleos, tuple_size>::value - 1>::apply(os, t); } template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; } template , string>::value, nullptr_t> = nullptr> istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; } template , string>::value, nullptr_t> = nullptr> ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; } } // namespace std #ifdef LOCAL #define dump(...) \ debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", \ dump_func(#__VA_ARGS__, __VA_ARGS__) template void dump_func(const char *ptr, const T &x) { debug_stream << '\t'; for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ') debug_stream << c; debug_stream << " : " << x << '\n'; } template void dump_func(const char *ptr, const T &x, rest_t... rest) { debug_stream << '\t'; for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ') debug_stream << c; debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...); } #else #define dump(...) ((void)0) #endif template void read_range(P __first, P __second) { for(P i = __first; i != __second; ++i) std::cin >> *i; } template void write_range(P __first, P __second) { for(P i = __first; i != __second; std::cout << (++i == __second ? '\n' : ' ')) std::cout << *i; } // substitue y for x if x > y. template inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitue y for x if x < y. template inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; } // binary search. i64 bin(const std::function &pred, i64 ok, i64 ng) { while(std::abs(ok - ng) > 1) { i64 mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; } return ok; } double bin(const std::function &pred, double ok, double ng, const double eps) { while(std::abs(ok - ng) > eps) { double mid = (ok + ng) / 2; (pred(mid) ? ok : ng) = mid; } return ok; } // be careful that val is type-sensitive. template void init(A (&array)[N], const T &val) { std::fill((T *)array, (T *)(array + N), val); } // reset all bits. template void reset(A &array) { memset(array, 0, sizeof(array)); } /* The main code follows. */ #ifndef SEGMENT_TREE_HPP #define SEGMENT_TREE_HPP template class segment_tree { class unique_queue { size_t *const que, *qbegin, *qend; bool *const inque; public: unique_queue(size_t n) : que(new size_t[n]), qbegin(que), qend(que), inque(new bool[n]{}) {} ~unique_queue() { delete[] que; delete[] inque; } void clear() { qbegin = qend = que; } bool empty() const { return qbegin == qend; } bool push(size_t x) { if(inque[x]) return false; return inque[*qend++ = x] = true; } size_t pop() { return inque[*qbegin] = false, *qbegin++; } }; // class unique_queue using value_type = typename Monoid::value_type; Monoid *const monoid_ptr, &monoid; const size_t orig_n, height, ext_n; value_type *const data; unique_queue que; void recalc(size_t node) { data[node] = monoid(data[node << 1], data[node << 1 | 1]); } void rebuild() { while(!que.empty()) { const size_t f = que.pop(), p = f >> 1; if(p && que.push(p)) recalc(p); } que.clear(); } void left_bound(size_t index, const std::function &pred, size_t node, size_t begin, size_t end, value_type &now, size_t &res) { if(index <= begin || end < res) return; if(end <= index) { const value_type nxt = monoid(data[node], now); if(pred(nxt)) { res = begin, now = nxt; return; } } if(node < ext_n) { // search the right child first left_bound(index, pred, node << 1 | 1, (begin + end) >> 1, end, now, res); left_bound(index, pred, node << 1, begin, (begin + end) >> 1, now, res); } } void right_bound(size_t index, const std::function &pred, size_t node, size_t begin, size_t end, value_type &now, size_t &res) { if(index >= end || begin > res) return; if(begin >= index) { const value_type nxt = monoid(now, data[node]); if(pred(nxt)) { res = end, now = nxt; return; } } if(node < ext_n) { // search the left child first right_bound(index, pred, node << 1, begin, (begin + end) >> 1, now, res); right_bound(index, pred, node << 1 | 1, (begin + end) >> 1, end, now, res); } } segment_tree(size_t n, Monoid *const _monoid_ptr, bool is_new_ptr) : monoid_ptr(is_new_ptr ? _monoid_ptr : nullptr), monoid(*_monoid_ptr), orig_n{n}, height(orig_n > 1 ? 32 - __builtin_clz(orig_n - 1) : 0), ext_n{1u << height}, data(new value_type[ext_n << 1]), que(ext_n << 1) { std::fill_n(data, ext_n << 1, monoid.identity()); } template segment_tree(iter_type __first, iter_type __last, Monoid *const _monoid_ptr, bool is_new_ptr) : monoid_ptr(is_new_ptr ? _monoid_ptr : nullptr), monoid(*_monoid_ptr), orig_n(std::distance(__first, __last)), height(orig_n > 1 ? 32 - __builtin_clz(orig_n - 1) : 0), ext_n{1u << height}, data(new value_type[ext_n << 1]), que(ext_n << 1) { static_assert(std::is_same::value_type, value_type>::value, "iterator's value_type should be equal to Monoid's"); std::fill(std::copy(__first, __last, data + ext_n), data + (ext_n << 1), monoid.identity()); for(size_t i = ext_n - 1; i; --i) recalc(i); } public: segment_tree(size_t n) : segment_tree(n, new Monoid, true) {} segment_tree(size_t n, Monoid *const _monoid_ptr) : segment_tree(n, _monoid_ptr, false) {} segment_tree(size_t n, Monoid &_monoid) : segment_tree(n, &_monoid, false) {} template segment_tree(const iter_type __first, const iter_type __last) : segment_tree(__first, __last, new Monoid, true) {} template segment_tree(const iter_type __first, const iter_type __last, Monoid *const _monoid_ptr) : segment_tree(__first, __last, _monoid_ptr, false) {} template segment_tree(const iter_type __first, const iter_type __last, Monoid &_monoid) : segment_tree(__first, __last, &_monoid, false) {} ~segment_tree() { delete monoid_ptr; delete[] data; } // reference to the element at position i. value_type &operator[](size_t i) { assert(i < orig_n); que.push(i |= ext_n); return data[i]; } void build(value_type *__first, value_type *__last) { assert((size_t)std::distance(__first, __last) <= orig_n); std::copy(__first, __last, data + ext_n); for(size_t i = ext_n - 1; i; --i) recalc(i); que.clear(); } template void build(iterator __first, iterator __last) { static_assert(std::is_same::value_type, value_type>::value, "iterator's value_type should be equal to Monoid's"); assert((size_t)std::distance(__first, __last) <= orig_n); std::copy(__first, __last, data + ext_n); for(size_t i = ext_n - 1; i; --i) recalc(i); que.clear(); } value_type fold(size_t begin, size_t end) { assert(end <= orig_n), rebuild(); value_type leftval = monoid.identity(), rightval = monoid.identity(); begin += ext_n, end += ext_n; while(begin < end) { if(begin & 1) leftval = monoid(leftval, data[begin++]); if(end & 1) rightval = monoid(rightval, data[--end]); begin >>= 1, end >>= 1; } return monoid(leftval, rightval); } // minimum l where range [l, index) meets the condition. size_t left_bound(size_t index, const std::function &pred) { assert(index <= orig_n); size_t res = index; value_type now = monoid.identity(); left_bound(index, pred, 1, 0, ext_n, now, res); return res; } // maximum r where range [index, r) meets the condition. size_t right_bound(size_t index, const std::function &pred) { assert(index < orig_n); size_t res = index; value_type now = monoid.identity(); right_bound(index, pred, 1, 0, ext_n, now, res); return res < orig_n ? res : orig_n; } }; // class segment_tree #endif using namespace std; struct solver { solver() { int n,Q; cin>>n>>Q; struct mono_t { vector a; using value_type = int; mono_t(size_t n) : a(n) { cin>>a; a.emplace(a.begin(),100010); } int identity() { return 0; } int operator()(int x, int y) { return a[x] init(n+1); iota(all(init),0); segment_tree seg(all(init),mono); while(Q--) { int t,l,r; cin>>t>>l>>r; if(t>1) { cout << seg.fold(l,r+1) << "\n"; } else { mono.swp(l,r); seg[l]=l; seg[r]=r; } } } }; main() { u32 t = 1; #ifdef LOCAL #endif // t = -1; // infinite loop // cin >> t; // case number given while(t--) solver(); }