#include #define For(i, a, b) for(int (i)=(a); (i)<(b); ++(i)) #define rFor(i, a, b) for(int (i)=(a)-1; (i)>=(b); --(i)) #define rep(i, n) For((i), 0, (n)) #define rrep(i, n) rFor((i), (n), 0) #define fi first #define se second using namespace std; typedef long long lint; typedef unsigned long long ulint; typedef pair pii; typedef pair pil; typedef pair pli; templatebool chmax(T &a, const T &b){if(abool chmin(T &a, const T &b){if(a>b){a=b; return true;} return false;} constexpr lint mod = 1e9+7; constexpr lint INF = mod*mod; constexpr int MAX = 200010; typedef struct UnionFindTree{ vector par; UnionFindTree(int n): par(n, -1){} int find(int x){ if(par[x] < 0) return x; return par[x] = find(par[x]); } int size(int x){ return -par[find(x)]; } bool unite(int x, int y){ x = find(x); y = find(y); if(x == y) return false; if(size(x) < size(y)) swap(x, y); par[x] += par[y]; par[y] = x; return true; } bool same(int x, int y){ return find(x) == find(y); } }UF; template struct edge{ int from, to; T cost; edge(int f, int t, T c): from(f), to(t), cost(c){} }; template struct Graph{ vector>> G; int n; Graph(int n_): n(n_){ G.resize(n); } void add_edge(int f, int t, T c){ G[f].emplace_back(f, t, c); } pair> bellman_ford(int s){ T d_INF = numeric_limits::max(); vector d(n, d_INF); vector> E; rep(i, n)for(edge &e: G[i]) E.push_back(e); d[s] = 0; rep(i, n)for(edge &e: E){ if(d[e.from] != d_INF && d[e.from] + e.cost < d[e.to]){ d[e.to] = d[e.from] + e.cost; if(i == n-1) return make_pair(true, d); } } return make_pair(false, d); } vector dijkstra(int s){ using P = pair; priority_queue, greater

> que; vector d(n, numeric_limits::max()); d[s] = 0; que.push(P((T)0, s)); while(!que.empty()){ P p = que.top(); que.pop(); int v = p.second; if(d[v] < p.first) continue; for(edge &e : G[v]){ if(d[e.to] > d[v] + e.cost){ d[e.to] = d[v] + e.cost; que.push(P(d[e.to], e.to)); } } } return d; } pair>> warshall_floyd(){ T d_INF = numeric_limits::max(); vector> d = vector>(n, vector(n, d_INF)); rep(i, n){ for(edge &e: G[i]) d[i][e.to] = e.cost; d[i][i] = 0; } rep(k, n)rep(i, n)rep(j, n)if(d[i][k] < d_INF && d[k][j] < d_INF){ d[i][j] = min(d[i][j], d[i][k] + d[k][j]); } rep(i, n)if(d[i][i] < 0) return make_pair(true, d); return make_pair(false, d); } T kruskal(){ vector> E; rep(i, n)for(edge &e: G[i]) E.push_back(e); sort(E.begin(), E.end(), [](const edge &e1, const edge &e2){return e1.cost < e2.cost;}); UF uf(n); T res = 0; for(edge &e: E){ if(!uf.same(e.from, e.to)){ uf.unite(e.from, e.to); res += e.cost; } } return res; } pair> toposo(vector &a, vector &vtoc, vector> &ctov){ int sum=0; for(int x: a) sum+=x; vector ret(n, -1), in(n, 0); rep(i, n)for(edge &e: G[i]) ++in[e.to]; int cur = 0; stack st; rep(i, n)if(!in[i]){ st.push(i); int m=200; for(int v: ctov[i]) chmin(m, a[v]); sum+=m; } if(st.empty()) return make_pair(false, ret); while(!st.empty()){ int v = st.top(); st.pop(); ret[cur++] = v; for(edge &e: G[v]){ if(!in[e.to]) return make_pair(false, ret); --in[e.to]; if(!in[e.to]) st.push(e.to); } } printf("%.1lf\n", (double)sum/2); return make_pair(cur==n, ret); } bool has_cycle(){ return !toposo().fi; } void scc_dfs(int v, vector &used, vector &vs){ used[v] = true; for(edge &e: G[v])if(!used[e.to]) scc_dfs(e.to, used, vs); vs.push_back(v); } void scc_rdfs(int v, int k, vector &vtoc, vector &used, vector> &rG, vector> &ctov){ used[v] = true; vtoc[v] = k; ctov[k].push_back(v); for(int nv: rG[v])if(!used[nv]) scc_rdfs(nv, k, vtoc, used, rG, ctov); } tuple, vector>> scc(){ vector> rG(n); rep(i, n)for(edge &e: G[i]) rG[e.to].push_back(i); vector used(n, false); vector vs; vector vtoc(n); rep(i, n)if(!used[i]) scc_dfs(i, used, vs); fill(used.begin(), used.end(), false); int k = 0; vector> ctov=vector>(n, vector()); rrep(i, n)if(!used[vs[i]]) scc_rdfs(vs[i], k++, vtoc, used, rG, ctov); return make_tuple(k, vtoc, ctov); } int bridge_dfs(int v, int pv, int &idx, vector &ord, vector &low, vector &bridge){ ord[v]=low[v]=idx++; for(auto &e: G[v])if(e.to!=pv){ int nv=e.to; if(ord[nv]<0){ chmin(low[v], bridge_dfs(nv, v, idx, ord, low, bridge)); if(low[nv]>ord[v]) bridge.emplace_back(min(v, nv), max(v, nv)); } else chmin(low[v], ord[nv]); } return low[v]; } vector get_bridge(){ vector ord(n, -1), low(n, -1); vector bridge; int idx=0; bridge_dfs(0, -1, idx, ord, low, bridge); sort(bridge.begin(), bridge.end()); bridge.erase(unique(bridge.begin(), bridge.end()), bridge.end()); return bridge; } int art_dfs(int v, int prev, int &idx, vector &ord, vector &low, vector &art){ ord[v]=low[v]=idx++; for(auto &e: G[v])if(e.to!=prev){ int nv=e.to; if(ord[nv]<0){ chmin(low[v], art_dfs(nv, v, idx, ord, low, art)); if((prev<0 && ord[nv]!=1) || (prev>=0 && low[nv]>=ord[v])){ art.push_back(v); } } else chmin(low[v], ord[nv]); } return low[v]; } vector get_art(){ vector ord(n, -1), low(n, -1), art; int idx=0; art_dfs(0, -1, idx, ord, low, art); sort(art.begin(), art.end()); art.erase(unique(art.begin(), art.end()), art.end()); return art; } }; int main(){ int n; scanf("%d", &n); Graph gr(n); vector L(n), S(n); rep(i, n){ scanf("%d%d", &L[i], &S[i]); --S[i]; gr.add_edge(S[i], i, 1); } int cmp; vector vtoc; vector> ctov; tie(cmp, vtoc, ctov)=gr.scc(); Graph gr_scc(cmp); bool used_edge[cmp][cmp]; rep(i, cmp)rep(j, cmp) used_edge[i][j]=false; rep(i, n){ int s=vtoc[S[i]], t=vtoc[i]; if(s!=t && !used_edge[s][t]){ used_edge[s][t]=true; gr_scc.add_edge(s, t, 1); } } gr_scc.toposo(L, vtoc, ctov); }