/* preprocessor start */ #ifdef LOCAL #define _GLIBCXX_DEBUG // gcc #define _LIBCPP_DEBUG 0 // clang #define __clock__ #else #pragma GCC optimize("Ofast") // #define _GLIBCXX_DEBUG // #define _LIBCPP_DEBUG 0 // #define NDEBUG #endif // #define __buffer_check__ #define __precision__ 1 #define iostream_untie true #define debug_stream std::cerr #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define all(v) std::begin(v), std::end(v) #define rall(v) std::rbegin(v), std::rend(v) #define odd(n) ((n) & 1) #define even(n) (not __odd(n)) #define __popcount(n) __builtin_popcountll(n) #define __clz32(n) __builtin_clz(n) #define __clz64(n) __builtin_clzll(n) #define __ctz32(n) __builtin_ctz(n) #define __ctz64(n) __builtin_ctzll(n) /* preprocessor end */ namespace setting { using namespace std::chrono; system_clock::time_point start_time, end_time; long long get_elapsed_time() { end_time = system_clock::now(); return duration_cast(end_time - start_time).count(); } void print_elapsed_time() { debug_stream << "\n----- Exec time : " << get_elapsed_time() << " ms -----\n"; } void buffer_check() { char bufc; if(std::cin >> bufc) debug_stream << "\n\033[1;35mwarning\033[0m: buffer not empty.\n"; } struct setupper { setupper() { if(iostream_untie) std::ios::sync_with_stdio(false), std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(__precision__); #ifdef stderr_path if(freopen(stderr_path, "a", stderr)) { std::cerr << std::fixed << std::setprecision(__precision__); } #endif #ifdef stdout_path if(not freopen(stdout_path, "w", stdout)) { freopen("CON", "w", stdout); debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdout file.\n"; } std::cout << ""; #endif #ifdef stdin_path if(not freopen(stdin_path, "r", stdin)) { freopen("CON", "r", stdin); debug_stream << "\n\033[1;35mwarning\033[0m: failed to open stdin file.\n"; } #endif #ifdef LOCAL debug_stream << "\n----- stderr at LOCAL -----\n\n"; atexit(print_elapsed_time); #endif #ifdef __buffer_check__ atexit(buffer_check); #endif #if defined(__clock__) || defined(LOCAL) start_time = system_clock::now(); #endif } } __setupper; // struct setupper } // namespace setting #ifdef __clock__ class { std::chrono::system_clock::time_point built_pt, last_pt; int built_ln, last_ln; std::string built_func, last_func; bool is_built = false; public: void build(int crt_ln, const std::string &crt_func) { is_built = true, last_pt = built_pt = std::chrono::system_clock::now(), last_ln = built_ln = crt_ln, last_func = built_func = crt_func; } void set(int crt_ln, const std::string &crt_func) { if(is_built) last_pt = std::chrono::system_clock::now(), last_ln = crt_ln, last_func = crt_func; else debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::set failed (yet to be built!)\n"; } void get(int crt_ln, const std::string &crt_func) { if(is_built) { std::chrono::system_clock::time_point crt_pt(std::chrono::system_clock::now()); long long diff = std::chrono::duration_cast(crt_pt - last_pt).count(); debug_stream << diff << " ms elapsed from" << " [ " << last_ln << " : " << last_func << " ]"; if(last_ln == built_ln) debug_stream << " (when built)"; debug_stream << " to" << " [ " << crt_ln << " : " << crt_func << " ]" << "\n"; last_pt = built_pt, last_ln = built_ln, last_func = built_func; } else { debug_stream << "[ " << crt_ln << " : " << crt_func << " ] " << "myclock_t::get failed (yet to be built!)\n"; } } } myclock; // unnamed class #define build_clock() myclock.build(__LINE__, __func__) #define set_clock() myclock.set(__LINE__, __func__) #define get_clock() myclock.get(__LINE__, __func__) #else #define build_clock() ((void)0) #define set_clock() ((void)0) #define get_clock() ((void)0) #endif namespace std { // hash template size_t hash_combine(size_t seed, T const &key) { return seed ^ (hash()(key) + 0x9e3779b9 + (seed << 6) + (seed >> 2)); } template struct hash> { size_t operator()(pair const &pr) const { return hash_combine(hash_combine(0, pr.first), pr.second); } }; template ::value - 1> struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(tuple_hash_calc::apply(seed, t), get(t)); } }; template struct tuple_hash_calc { static size_t apply(size_t seed, tuple_t const &t) { return hash_combine(seed, get<0>(t)); } }; template struct hash> { size_t operator()(tuple const &t) const { return tuple_hash_calc>::apply(0, t); } }; // iostream template istream &operator>>(istream &is, pair &p) { return is >> p.first >> p.second; } template ostream &operator<<(ostream &os, const pair &p) { return os << p.first << ' ' << p.second; } template struct tupleis { static istream &apply(istream &is, tuple_t &t) { tupleis::apply(is, t); return is >> get(t); } }; template struct tupleis { static istream &apply(istream &is, tuple_t &t) { return is; } }; template istream &operator>>(istream &is, tuple &t) { return tupleis, tuple_size>::value - 1>::apply(is, t); } template <> istream &operator>>(istream &is, tuple<> &t) { return is; } template struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { tupleos::apply(os, t); return os << ' ' << get(t); } }; template struct tupleos { static ostream &apply(ostream &os, const tuple_t &t) { return os << get<0>(t); } }; template ostream &operator<<(ostream &os, const tuple &t) { return tupleos, tuple_size>::value - 1>::apply(os, t); } template <> ostream &operator<<(ostream &os, const tuple<> &t) { return os; } template , string>::value, nullptr_t> = nullptr> istream& operator>>(istream& is, Container &cont) { for(auto&& e : cont) is >> e; return is; } template , string>::value, nullptr_t> = nullptr> ostream& operator<<(ostream& os, const Container &cont) { bool flag = 1; for(auto&& e : cont) flag ? flag = 0 : (os << ' ', 0), os << e; return os; } } // namespace std /* dump definition start */ #ifdef LOCAL #define dump(...) debug_stream << "[ " << __LINE__ << " : " << __FUNCTION__ << " ]\n", dump_func(#__VA_ARGS__, __VA_ARGS__) template void dump_func(const char *ptr, const T &x) { debug_stream << '\t'; for(char c = *ptr; c != '\0'; c = *++ptr) if(c != ' ' && c != '\t') debug_stream << c; debug_stream << " : " << x << '\n'; } template void dump_func(const char *ptr, const T &x, rest_t... rest) { debug_stream << '\t'; for(char c = *ptr; c != ','; c = *++ptr) if(c != ' ' && c != '\t') debug_stream << c; debug_stream << " : " << x << ",\n"; dump_func(++ptr, rest...); } #else #define dump(...) ((void)0) #endif /* dump definition end */ /* function utility start */ template T read(types... args) noexcept { T obj(args...); std::cin >> obj; return obj; } #define input(type, var, ...) type var{read(__VA_ARGS__)} // substitute y for x if x > y. template inline bool sbmin(T &x, const T &y) { return x > y ? x = y, true : false; } // substitute y for x if x < y. template inline bool sbmax(T &x, const T &y) { return x < y ? x = y, true : false; } // binary search on discrete range. template iter_type binary(iter_type __ok, iter_type __ng, pred_type pred) { std::ptrdiff_t dist(__ng - __ok); while(abs(dist) > 1) { iter_type mid(__ok + dist / 2); if(pred(mid)) __ok = mid, dist -= dist / 2; else __ng = mid, dist /= 2; } return __ok; } // binary search on real numbers. template long double binary(long double __ok, long double __ng, const long double eps, pred_type pred) { while(abs(__ok - __ng) > eps) { long double mid{(__ok + __ng) / 2}; (pred(mid) ? __ok : __ng) = mid; } return __ok; } // reset all bits. template void reset(A &array) { memset(array, 0, sizeof(array)); } // be careful that val is type-sensitive. template void init(A (&array)[N], const T &val) { std::fill((T*)array, (T*)(array + N), val); } /* functon utility end */ /* using alias start */ using namespace std; using i32 = int_least32_t; using i64 = int_least64_t; using u32 = uint_least32_t; using u64 = uint_least64_t; using pii = pair; using pll = pair; template using heap = priority_queue; template using rheap = priority_queue, greater>; template using hashset = unordered_set; template using hashmap = unordered_map; /* using alias end */ /* library start */ #ifndef Strongly_connected_components_hpp #define Strongly_connected_components_hpp #include class Strongly_connected_components { const size_t V; std::vector> adj, mem; std::vector comp, low; size_t n; bool is_built; public: Strongly_connected_components(size_t _V) : V(_V), adj(V), comp(V), low(V), is_built() {} // add an edge from the vertex s to the vertex t. void add_edge(size_t s, size_t t) { adj[s].emplace_back(t); is_built = false; } // the number of the components. size_t count() { return build(), n; } // the number of vertices in the i-th component. size_t size(size_t i) { return build(), mem[i].size(); } // vertices in the i-th component. const std::vector &component(size_t i) { return build(), mem[i]; } // the component which the vertex v belongs to. size_t operator[](size_t v) { return build(), comp[v]; } // the directed acyclic graph consisting of the components. std::vector> make_dag() { build(); std::vector> res(n); bool *apr = new bool[V]{}; size_t *stack_ptr = new size_t[V]; for(size_t i = 0; i != n; ++i) { size_t *itr = stack_ptr; for(size_t s : mem[i]) for(size_t t : adj[s]) if(!apr[comp[t]]) apr[comp[t]] = true, *itr++ = comp[t]; res[i].resize(itr - stack_ptr); while(itr != stack_ptr) apr[res[i][--itr - stack_ptr] = *itr] = false; } delete[] apr; delete[] stack_ptr; return res; } protected: void build() { if(is_built) return; is_built = true, n = 0; fill(low.begin(), low.end(), -1); fill(comp.begin(), comp.end(), -1); size_t *itr = new size_t[V]; for(size_t v = 0, c = 0; v != V; ++v) affix(v, c, itr); delete[] itr; mem.resize(n); for(size_t v = 0; v != V; ++v) mem[comp[v] = n - 1 - comp[v]].emplace_back(v); } size_t affix(size_t v, size_t &c, size_t* &itr) { if(~low[v]) return ~comp[v] ? -1 : low[v]; size_t idx = c++; low[v] = idx; *itr++ = v; for(int u : adj[v]) low[v] = std::min(low[v], affix(u, c, itr)); if(low[v] == idx) { do { comp[*--itr] = n; } while(*itr != v); ++n; } return low[v]; } }; // class Strongly_connected_components #endif // Strongly_connected_components_hpp /* library end */ /* The main code follows. */ struct solver { solver() { input(int,n); Strongly_connected_components scc(n); vector l(n); int sum=0; for(int i=0; i>l[i]; sum+=l[i]; input(int,s); --s; scc.add_edge(s,i); } auto dag(scc.make_dag()); bool in[111]={}; for(int i=0; i> t; // case number given while(t--) { solver(); } }