#include #include #include int H, W; std::vector A; using lint = long long int; lint get_d(int x, int y) { lint dd = 1 + (A[x][y] == 'k') * (x + y); return dd; } #include #include #include #include #include struct GridGraph { using T_E = lint; const T_E INF = 1e18; int H, W; std::array dx = {1, 0}; std::array dy = {0, 1}; GridGraph() = default; GridGraph(int h, int w) : H(h), W(w) {} inline T_E edge_cost(int x_s, int y_s, int x_t, int y_t) { return get_d(x_t, y_t); } // Dijkstra's algorithm // Complexity: O(HWlog(HW)) std::vector> dij; // Distance from (x_s, y_s) std::vector>> dij_prv; // Previous node for Dijkstra optimal path void dijkstra(int x_s, int y_s) { dij.assign(H, std::vector(W, INF)); dij_prv.assign(H, std::vector>(W, std::make_pair(-1, -1))); using P = std::tuple; std::priority_queue, std::greater

> pq; pq.emplace(0, x_s, y_s); while (!pq.empty()) { T_E dnow; int x, y; std::tie(dnow, x, y) = pq.top(); pq.pop(); if (dij[x][y] < dnow) continue; for (size_t d = 0; d < dx.size(); d++) { int xn = x + dx[d]; int yn = y + dy[d]; if (xn < 0 or yn < 0 or xn >= H or yn >= W) continue; T_E dnxt = dnow + edge_cost(x, y, xn, yn); if (dij[xn][yn] > dnxt) { dij[xn][yn] = dnxt; dij_prv[xn][yn] = std::make_pair(x, y); pq.emplace(dnxt, xn, yn); } } } } }; using namespace std; int main() { cin >> H >> W; A.resize(H); for (int i = 0; i < H; i++) cin >> A[i]; GridGraph g(H, W); g.dijkstra(0, 0); cout << g.dij[H - 1][W - 1] << endl; }